Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

В процессе развития этой фазы сжатия атомные ядра становятся все более насыщенными нейтронами, что вызывает вторую фазу: нейтроны начинают просачиваться (выдавливаться) из ядер в межядерное пространство, где еще осталось немного электронов. Эти просочившиеся нейтроны, как и электроны, противодействуют продолжающемуся сжатию собственным давлением вырождения. Это нейтронное давление вырождения прекращает обрыв в уравнении состояния, сопротивление сжатию возвращается и начинает увеличиваться. В третьей фазе, при плотности приблизительно между 10 и

12

4x10 граммов на кубический сантиметр, все пересыщенные нейтронами ядра полностью распадаются, т. е. разваливаются на отдельные нейтроны, образующие нейтронный газ, изученный Оппенгеймером и Волковым, с малой примесью электронов и протонов. С этого момента при повышении плотности уравнение состояния принимает вид уравнения состояния Оппенгеймера—Волкова нейтронных звезд (штриховая кривая на диаграмме, если ядерные силы игнорируются; сплошная кривая, если воспользоваться лучшим пониманием ядерных сил 1990-х).

***

Имея на руках это уравнение состояния холодного мертвого вещества, Джон Уилер попросил Масами Вакано, постдока из Японии, проделать то же, что сделал для нейтронных звезд Волков, а для белых карликов Чандрасекар: соединить уравнения состояния с уравнениями общей теории относительности, описывающими баланс гравитации и давления внутри звезды. Потом из этого соединения получить дифференциальное уравнение, описывающее структуру звезды, а затем численно решить это дифференциальное уравнение. Численные расчеты раскроют детали внутренней структуры всех холодных, мертвых звезд и, что самое важное, определят звездные массы.

Вычисления структуры отдельной звезды (распределение энергии, давления и гравитации внутри звезды) потребовали от Чандрасекара и Волкова многодневного напряженного труда, когда в 1930-х годах

они били по кнопкам своих механических калькуляторов в Кембридже и Беркли. Тогда как Вакано в Принстоне в 50-х имел в своем распоряжении один из первых в мире цифровых компьютеров MANIAC (комнату набитую электронными лампами и проводами), который был сооружен в Принстонском институте передовых исследований для расчетов, связанных с созданием водородной бомбы. С помощью MANLAK Вакано мог «перемалывать» расчеты структуры каждого типа звезд менее чем за час.

Результаты вычислений Вакано показаны на рис.5.5. Этот рисунок представляет собой окончательный каталог холодных мертвых объектов и отвечает на все вопросы, поднимавшиеся ранее в этой главе.

На диаграмме рис.5.5 окружность звезды отложена по оси вправо, а ее масса — вверх. Каждая звезда с окружностью и массой, которые попадают в светлую область рисунка, имеет внутренние силы гравитации, превышающие давление, и потому гравитация звезды будет заставлять звезду сжиматься и перемещаться влево на этой диаграмме. Каждая звезда в заштрихованной области имеет давление, превосходящее гравитацию, и поэтому ее давление будет заставлять звезду расширяться при движении по диаграмме вправо. Лишь на границе между заштрихованной и светлой областями гравитация и давление точно уравниваются, и, таким образом, граничная кривая представляет собой кривую холодных, мертвых звезд в состоянии равновесия давления и гравитации.

Начав двигаться вдоль кривой равновесия, мы будем последовательно проходить мертвые «звезды» все более высокой плотности. При наименьших плотностях (в нижней части рисунка) эти «звезды» — даже и не звезды, а холодные планеты из железа. (Когда Юпитер окончательно исчерпает свой внутренний источник радиоактивного тепла и остынет, хотя он и построен в основном из водорода, а не из железа, он будет, тем не менее, располагаться вблизи самой правой точки на кривой равновесия.) Более высокие плотности, чем у планеты, имеют белые карлики Чандрасекара.

Если, достигнув самой верхней точки кривой в области белых карликов (предел Чандрасекара в 1.4 солнечной массы48), начать затем двигаться в сторону еще больших плотностей, то мы неминуемо сталкиваемся с холодными мертвыми звездами, которые не могут существовать в природе, потому что они нестабильны по отношению к взрыву или схлопыванию. При движении от плотностей белых карликов к большим плотностям нейтронных звезд масса этих нестабильных звезд будет уменьшаться, пока не достигнет минимума, примерно равного 0.1 солнечной массы, при окружности 1000 км и центральной плотности Зх1049 г/см3. Это та первая нейтронная звезда, которую изучали Оппенгеймер и Сербер, и показали, что она не может располагаться в ядре Солнца и иметь массу в 0.001 массы Солнца, как полагал Ландау.

Врезка 5.6

Неустойчивые обитатели промежутка между белыми карликами и нейтронными звездами

Перейти на страницу:

Похожие книги