Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

В 1890-х Макс Планк заметил в форме спектра излучения, испускаемого очень горячими объектами, намеки на то, что физики что-то упустили в понимании природы света. В 1905 г. Эйнштейн показал то, чего не доставало: свет иногда ведет себя как волна, а иногда как частица (теперь называемая фотоном). Эйнштейн объяснил, что он ведет себя как волна, когда интерферирует сам с собой, но как

частица в фотоэлектрическом эффекте, когда слабый пучок света падает на поверхность металла. Луч выбивает электроны из металла по одному, именно так, как если бы с электронами сталкивались, выбивая их с поверхности металла, отдельные частицы света (отдельные фотоны). По энергии выбиваемых электронов Эйнштейн определил, что энергия фотона всегда обратно пропорциональна длине волны света. Таким образом, свойства фотона переплетены с волновыми свойствами: длина волны однозначно связана с энергией фотона. Открытие Эйнштейном дуализма волновых и корпускулярных свойств света и первые квантовомеханические законы физики, которые он начал строить вокруг этого открытия, обеспечили ему в 1922 г. Нобелевскую премию 1921 г.

Хотя Эйнштейн сформулировал общую теорию относительности почти единолично, он был только одним среди многих тех, кто внес свой вклад в законы квантовой механики — законы «царства малого».

Когда Эйнштейн обнаружил дуализм волн/частиц света, он еще не понимал того, что электрон или протон тоже могут вести себя иногда как частицы, а иногда как волны. Об этом никто не догадывался до середины 1920-х, когда Луи де Бройль сформулировал такую гипотезу, а затем Эрвин Шрединдгер использовал ее как основу для полного набора законов квантовой механики, законов, в которых электрон является волной вероятности. Вероятности чего? Вероятности локализации частицы. Эти «новые» законы квантовой механики (которые оказались чрезвычайно успешными в объяснении поведения электронов, протонов, атомов и молекул) не будут нас особенно волновать в этой книге. Однако время от времени некоторые из их особенностей будут все же для нас важны. Такой важной особенностью для этой главы является электронное вырождение.

Из расчетов Фоулера следовало, что поскольку электроны в Сириусе В и других белых карликах сжаты в столь малых ячейках, давление вырождения в них гораздо больше температурного (вызванного теплом). Соответственно, когда Сириус В остывает, его слабое термическое давление исчезает, а огромное давление вырождения остается и продолжает противостоять гравитации.

Таким образом, решение парадокса белых карликов Эддингтона имеет две стороны. Во-первых, Сириус В не сдерживает влияние гравитации с помощью температурного давления, как думали ранее, до появления квантовой механики: основную роль играет давление вырождения. Во-вторых, когда Сириус В остывает, ему нет надобности расширяться до плотности камня, чтобы поддерживать себя; как раз наоборот, он будет вполне удовлетворительно поддерживаться давлением вырождения при существующей плотности 4 млн г/см3.

Читая все это и изучая математические выкладки в Мадрасской библиотеке, Чандрасекар был попросту очарован. Это было его первое соприкосновение с современной астрономией, и он обнаружил глубокие следствия двух, идущих рука об руку, революционных идей физики XX века: общая теория относительности Эйнштейна с новым взглядом на природу пространства и времени проявилась в красноволновом сдвиге света, испускаемого Сириусом В, а новая квантовая механика с корпускулярно-волновым дуализмом была ответственна за внутреннее давление Сириуса В. Такая астрономия представлялась благодатным полем, на котором молодой человек мог бы проявить себя.

Продолжая обучение в Мадрасе, Чандрасекар обнаружил дальнейшие приложения квантовой механики к астрономической Вселенной. Он даже написал небольшую статью о своих идеях, отправил ее в Англию Фоулеру, с которым ранее никогда не встречался, и Фоулер представил ее к публикации.

Наконец, в 1930 г. в возрасте 19 лет Чандрасекар получил индийский эквивалент степени бакалавра и в последнюю неделю июля ступил на борт парохода, отплывающего в далекую Англию. Он был принят для продолжения образования в Кембриджский университет — место, где работали его кумиры Фоулер и Эддингтон.

Предельная масса

Восемнадцать дней плавания по морю из Мадраса в Саутгемптон были для Чандрасекара первой за много месяцев возможностью спокойно подумать о физике, не отвлекаясь на рутину учебы и экзаменов. Морское уединение способствовало размышлениям, которые были весьма плодотворны. Настолько, что фактически помогли получить ему Нобелевскую премию, правда, лишь 54 года спустя и только после серьезной борьбы за признание мировым астрономическим сообществом.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука