Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

Реакцией астрономического сообщества было непроницаемое молчание. Казалось, никто не заинтересовался. Поэтому Чандрасекар, желая поскорее получить степень доктора философии, обратился к более насущным задачам.

Три года спустя, получив степень доктора, Чандрасекар посетил Россию, чтобы обменяться идеями с советскими учеными. В Ленинграде молодой армянский астроном Виктор Амазаспович Амбарцумян заявил Чандрасекару, что ни один астроном в мире не поверит в его странный предел массы до тех пор, пока на основании физических законов он не рассчитает массы достаточного числа белых карликов и ясно не покажет, что все они лежат ниже провозглашенного порога. При этом было бы явно недостаточно, утверждал Амбарцумян, чтобы Чандрасекар проанализировал только белые карлики с относительно низкой плотностью и сопротивлением, равным 5/3, и белые карлики с чрезвычайно высокой плотностью и сопротивлением 4/3. Ему следовало бы также исследовать несколько белых карликов с промежуточными значениями плотности и сопротивления и показать, что они также имеют массу, меньшую 1,4 солнечной. По возвращении в Кембридж Чандрасекар принял вызов Амбарцумяна.

В качестве основы для анализа белых карликов с промежуточными значениями плотности необходимо было иметь уравнение состояния их вещества при любых значениях плотности — от низкой до предельно большой. (Под термином «состояние» вещества физики понимают плотность и давление в веществе, или, что то же самое, его плотность и сопротивление сжатию, поскольку из плотности и сопротивления можно вычислить давление. Под «уравнением состояния» понимается соотношение между сопротивлением и плотностью, т. е. сопротивление «как функция» плотности.)

К концу 1934 г., когда Чандрасекар принял вызов Амбарцумяна, уравнение состояния для белых карликов, благодаря вычислениям Эдмунда Стоунера из университета Лидса в Англии и Вильгельма Андерсона из Тартусского университета в Эстонии, было уже известно. Уравнение состояния Стоунера—Андерсона показало, что когда вещество белого карлика сжимается все сильнее и сильнее, переходя от нерелятивистского режима низкой плотности и малых скоростей электронов в релятивистскую область чрезвычайно высоких плотностей и околосветовых скоростей движения электронов, сопротивление вещества сжатию плавно спадает от 5/3 до 4/3 (левая часть рис. 4.3). Трудно придумать более простое поведение.

Чтобы ответить на вызов Амбарцумяна, Чандрасекар должен был соединить уравнение состояния (зависимость сопротивления от плотности) с законами баланса между давлением и гравитацией и, исходя из этого, получить дифференциальное уравнение\ описывающее внутреннюю структуру звезды, т.е. изменение плотности звезды в зависимости от расстояния до ее центра. Затем требовалось решить полученное дифференциальное уравнение для десятка или около того звезд, плотность вещества в центре которых меняется от низких до чрезвычайно высоких значений. Только решая дифференциальное 49


4.3. Уравнение состояния вещества белых карликов, т.е. соотношение между плотностью вещества и сопротивлением сжатию (слева). По горизонтальной оси отложена плотность, до которой сжато вещество, по вертикальной — сопротивление (увеличение давления, в процентах, вызванное ростом плотности на 1%). Вдоль кривой проставлены значения давления сжатия (равные внутреннему давлению) в единицах атмосферного давления. Диаметр (по горизонтали) и масса (по вертикали) звезд типа белых карликов, рассчитанные Чандрасекаром с помощью механического арифмометра «Брауншвайгер», принадлежавшего Эддингтону (справа)

уравнение для каждой отдельной звезды, он мог узнать ее массу и установить меньше ли она 1,4 солнечной.

Для звезд как с малой, так и с предельно большой плотностью, исследованных Чандрасекаром на борту парохода, решение соответствующего дифференциального уравнения и вытекающее из него строение звезды нашлось в книге Эддингтона. Однако для звезд с промежуточными значениями плотности вывести решение с помощью математических формул Чандрасекару никак не удавалось. Вычисления были слишком сложны. Ничего не оставалось, кроме как решить дифференциальные уравнения численно, с помощью счетной машины.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука