Читаем Черные дыры и складки времени полностью

Термодинамика черных дыр — вот то поле, на котором Хокинг потерпел поражение. Термодинамика — это набор физических законов, которые управляют случайным статистическим поведением большого количества атомов, например, атомов, которые входят в состав комнатного воздуха или в состав всего Солнца. Статистическое поведение атомов включает, кроме всего прочего, их случайные тепловые движения; соответственно, законы термодинамики включают законы, которые управляют теплотой. Отсюда название термодинамика.

За год до того как Хокинг открыл свою теорему площади, Деметриос Кристодулу, 19-летний студент из группы Уилера в Принстоне, заметил, что уравнения, описывающие медленные изменения свойств черных дыр (например, когда они медленно аккрецируют газ), напоминают некоторые уравнения термодинамики. Это сходство было поразительным, но не было никакого основания считать, что это нечто большее, нежели совпадение.

Сходство усиливалось теоремой площади Хокинга: эта теорема очень сильно напоминала второй закон термодинамики. По сути дела, теорема площади в том виде, как она цитировалась в этой главе, становится вторым законом термодинамики, если мы заменим фразу «площади горизонтов событий» словом «энтропия»: измерим в некоторой области пространства и в некоторый момент времени (в произвольной системе отчета) всю имеющуюся энтропию. Затем через произвольно большое время снова измерим полную энтропию. Если между измерениями ничего не приходило и не уходило через «стенки» области пространства, то полная энтропия не могла уменьшиться, она могла стать только больше.

Что это за штука, называемая «энтропией», которая только возрастает? Это величина «случайности» в выбранной области пространства, а увеличение энтропии означает, что эта величина все время возрастает.

Говоря более точно (см. Врезку 12.3), энтропия — это логарифм количества способов, которыми могут распределяться атомы и молекулы в нашей выбранной области без изменения макроскопических свойств этой области[117]. Когда существует много различных способов распределения атомов и молекул, то существует огромное количество микроскопических случайностей и энтропия велика.

Закон увеличения энтропии (второй закон термодинамики) имеет большое значение. В качестве примера представьте себе, что в нашей комнате, где, естественно, есть воздух, разбросано несколько скомканных газет. Воздух и бумага вместе имеют меньшую энтропию, чем они обладали бы в том случае, если бы мы подожгли эти газеты и они сгорели бы с выделением углекислого газа, водяных паров и небольшого количества пепла. Другими словами, в комнате, содержащей просто воздух и бумагу, меньше способов случайного распределения молекул, чем в комнате, содержащей воздух, углекислый газ, водяные пары и пепел. Бумага легко загорается от простой искры, но никакой процесс горения не обратит углекислый газ, воду, пепел и воздух в бумагу. При горении энтропия возрастает, при обратном процессе она бы уменьшалась. Горение мы наблюдаем повседневно, с обратным процессом не приходилось сталкиваться никому.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже