Еще в ноябре 1970 г. Стивен Хокинг заметил удивительное сходство своего закона возрастания площади со вторым законом термодинамики, но он считал это сходство простым совпадением. Надо быть сумасшедшим, или, по крайней мере недалеким, думал Хокинг, чтобы провозглашать, что площадь горизонта событий черной дыры и есть ее, в некотором смысле, энтропия. В конце концов, в черной дыре нет ничего случайного. Черная дыра — это противоположность случайности; это воплощенная простота. Как только черная дыра приходит в состояние покоя (излучив гравитационные волны; рис. 7.4), она становится «лысой»: все ее свойства в точности определяются всего лишь тремя параметрами — ее массой, угловым моментом и электрическим зарядом. Никакой случайности!
Джекоба Бекенштейна это не убедило. Он вполне допускал, что площадь черной дыры и есть ее энтропия или, точнее говоря, энтропия, умноженная на некоторую константу. Если это не так, утверждал Бекенштейн, если черные дыры имеют убывающую энтропию (вообще без случайностей), как говорил Хокинг, то черные дыры можно использовать для уменьшения энтропии Вселенной и таким образом нарушить второй закон термодинамики. Для этого нужно всего лишь собрать все молекулы воздуха из некоторой комнаты в маленький пакетик и забросить его в черную дыру. Молекулы воздуха и вся энтропия, которую они несут с собой, исчезнет из нашей Вселенной, когда пакетик войдет в черную дыру и, если энтропия черной дыры не увеличивается для компенсации этой потери, полная энтропия Вселенной уменьшится. Это нарушение второго закона термодинамики было бы чрезвычайно нежелательным, утверждал Бекенштейн. Чтобы сохранить второй закон, нужно предположить, что черная дыра должна обладать энтропией, которая увеличивается, когда пакет падает через ее горизонт событий. Бекенштейну показалось, что наиболее подходящим кандидатом на роль этой энтропии является площадь поверхности черной дыры.
Вовсе нет, отвечал Хокинг. Можно лишиться молекул воздуха, выбросив их в черную дыру, и можно также лишиться энтропии. В этом и состоит природа черных дыр. Мы всего лишь должны принять нарушение второго закона термодинамики, говорит Хокинг. Свойства черных дыр требуют этого, и, кроме всего прочего, никаких серьезных последствий не будет. Например, хотя при обычных обстоятельствах нарушение второго закона термодинамики означало бы возможность создания вечного двигателя, в случае с черной дырой никакой вечный двигатель невозможен. Это нарушение — всего лишь незначительная особенность физических законов, особенность, с которой они прекрасно уживаются.
Бекенштейна убедить не удалось. Все мировые эксперты по черным дырам оказались на стороне Хокинга — все, за исключением Джона Уилера, учителя Бекенштейна. «Ваша идея достаточна сумасшедшая и вполне может быть правильной», — сказал Уилер Бекенштейну. Воодушевленный наставлением учителя, Бекенштейн засучил рукава и принялся за работу. Он оценил, насколько должна вырасти энтропия черной дыры, когда в нее попадает пакетик с воздухом, для того чтобы спасти второй закон термодинамики. Он также оценил, насколько этот пакетик с воздухом увеличит площадь горизонта событий. Из этих приближенных оценок он вывел зависимость между энтропией и площадью, зависимость, которая
Это огромная энтропия. Она характеризует колоссальную случайность. Где же прячется эта случайность? Внутри черной дыры — заключил Бекенштейн. Внутренности черной дыры должны содержать громадное количество атомов или молекул, или чего-то в этом роде. Все они случайно распределены, и полное число возможных способов их распределений должно быть[119]
.Чепуха, отвечали ведущие специалисты по физике черных дыр, включая Хокинга и меня. Внутренности черной дыры содержат сингулярность, там нет ни атомов, ни молекул.
Тем не менее, сходство законов термодинамики со свойствами черных дыр поражало.
* * *