Врезка 12.4
Флуктуации вакуума
Флуктуации вакуума для электромагнитных и гравитационных волн — это то же, что «клаустрофобное» вырождение движения для электронов.
Вспомним (глава 4), что если электрон ограничить в небольшой ячейке пространства, то как бы мы ни пытались его остановить, законы квантовой механики вынуждают электрон двигаться все время случайным и непредсказуемым путем. Именно это «клаустрофобное» вырождение движения является источником давления, с помощью которого белые карлики сопротивляются сжатию под действием собственных сил гравитации.
Подобно этому, нам никогда не удастся удалить из некоторой области пространства все электромагнитные и гравитационные колебания. Законы квантовой механики говорят о том, что всегда остаются некоторые случайные, непредсказуемые колебания, т. е. случайные и непредсказуемые электромагнитные и гравитационные волны. Это и есть флуктуации вакуума, которые, по Зельдовичу, будут «щекотать» вращающуюся металлическую сферу или черную дыру и заставлять их излучать.
Эти флуктуации вакуума нельзя остановить, удалив их энергию, потому что в среднем они не обладают никакой энергией. Кое-где и кое-когда они приобретают положительную энергию, «одолженную» ими в других местах, а эти другие места приобретают вследствие этого отрицательную энергию. Совсем как в банках, которые не разрешают своим вкладчикам долго иметь негативный баланс, законы физики вынуждают области с отрицательной энергией быстро пополнять свои запасы за счет положительной энергии своих соседей, восстанавливая, таким образом, свою энергию до нулевого или даже до положительного значения. Этот непрерывный обмен энергией, имеющий случайный характер, и вызывает флуктуации вакуума.
Точно так же, как вырожденные движения электрона становятся все более сильными, если ограничивать электрон в ячейке все меньшего и меньшего размера (глава 4), вакуумные флуктуации электромагнитных и гравитационных волн в ограниченных областях усиливаются, т. е. они больше для более коротких волн. Как мы увидим в главе 13, это будет иметь глубокие последствия для природы сингулярности в центрах черных дыр.
Электромагнитные вакуумные флуктуации хорошо изучены и часто применяются в современной физике. Например, они играют ключевую роль в работе люминесцентной лампы. Электрический разряд возбуждает атомы ртути в трубке, и затем случайные электромагнитные вакуумные флуктуации «щекочут» каждый возбужденный атом, вынуждая его время от времени излучать часть своей энергии возбуждения в виде электромагнитной волны (фотона)[122]
. Это излучение называетсяВ отличие от электромагнитных вакуумных флуктуаций гравитационные флуктуации вакуума никогда не наблюдали экспериментально. Современная технология, хотя и с большим трудом, могла бы обнаружить гравитационные волны от мощных столкновений черных дыр (глава 10), но не волны от гораздо более слабых вакуумных флуктуаций.