Читаем Четвертое измерение полностью

Так можно получить все точки гиперсферы. Чтобы лучше понять эту идею, мы повторим этот процесс на поверхности Флатландии. Предположим, что Квадрат, главный герой книги Эбботта, захотел изобразить на плоскости сферу с центром в точке О и радиусом 5. Сначала он нарисовал в своей плоской вселенной окружность радиуса 5, которая, как он знает, является частью трехмерной сферы, то есть той частью, которая находится во Флатландии. Затем он действует так же, как и мы: он перемещается в любом направлении от центра на расстоянии 4 м, а затем представляет движение на 3 м вверх. По теореме Пифагора (которую он, к счастью, знает) полученная точка также будет точкой сферы (см. рисунок ниже). Кроме того, из точек окружности меньшего радиуса, например 4 м, Квадрат может представить другую окружность в верхней части сферы (то есть плоское сечение сферы), расположенную в 3 м над Флатландией. Другая меньшая окружность может быть получена при движении вниз.



Окружность с центром О и радиусом 5 м, нарисованная Квадратом, является той частью сферы, которая находится во Флатландии. Если мы переместимся от центра круга на расстояние 4 м, а затем на 3 м вверх, то мы окажемся в точке Р, которая также будет точкой сферы радиуса 5 м.


Квадрату удалось понять, что такое сфера, но теперь он должен попытаться представить ее. Учитывая, что каждая окружность с центром О и радиусом меньше 5 м соответствует окружности сферы (на самом деле двум окружностям), квадрат-математик представляет себе половину сферы как группу всех окружностей с центром О и радиусом меньше 5 м, как показано на рисунке.



Полусфера, изображенная на плоскости в виде плоских окружностей с радиусами меньшими, чем радиус сферы (рисунок Хосу Арройо).


Квадрат может мысленно представить себе это изображение, но все еще с большим трудом, поэтому он идет дальше и разделяет все круги по длине отрезка (отрезка прямой линии с концами —5 и 5) так, что каждая точка отрезка обозначает высоту h от плоскости: положительная — вверх, отрицательная — вниз. Круг, соответствующий этой точке, будет кругом сечения сферы на высоте h (радиус которого равен положительному числу с, вычисляемому по теореме Пифагора: h2 + с2 52). Следующий рисунок получен именно так.



Точки, находящиеся на отрезке, указывают высоту, на которой расположена каждая из окружностей. Этот рисунок является визуализацией сферы на плоскости (рисунок Хосу Арройо).


Возвращаясь к случаю гиперсферы радиуса 5 м в четвертом измерении, мы можем применить аналогичный метод и представить полугиперсферу как семейство всех сфер с центрами на вершине мачты и с радиусами, меньшими 5 м или равными 5 м. Мы можем представить гиперсферу как все сферы, расположенные на различных высотах h в направлении ана или ката.



Все сферы в направлении, перпендикулярном к трехмерному пространству (в направлении ана или ката), являющиеся частями гиперсферы, изображены на отрезке, точки которого указывают высоту каждой сферы. Этот рисунок является визуализацией гиперсферы в нашем трехмерном пространстве (рисунок Хосу Арройо).


Ортогональные проекции


Одним из методов, используемых для визуализации четырехмерного объекта, в данном случае гиперкуба, в трехмерном или даже в двумерном пространстве, являются математические проекции, которые преобразуют четырехмерное пространство в трехмерное. Как правило, мы можем использовать математические проекции для преобразования любого n-мерного пространства в пространства меньших размерностей.

Существует два типа проекций — геометрические и алгоритмические. Первый является более естественным, его можно интерпретировать как лучи света, дающие изображения и тени. Алгоритмические проекции выражаются с помощью математических формул. Это означает, что геометрическая интерпретация теряется, зато можно использовать мощные математические средства.

В этой главе мы рассмотрим два типа естественных геометрических проекций, используемых в повседневной жизни. Это ортогональные проекции, соответствующие освещению солнечным светом, и центральные проекции, связанные с близко расположенным источником света, например лампой или фонарем. Именно так работает наше зрение, и именно их имитирует перспектива в живописи.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги