Читаем Четвертое измерение полностью

Кроме того, частям объекта, которые ближе к центральной точке проекции, соответствуют более длинные отрезки на проекции. Другими словами, у куба все ребра имеют одинаковую длину, а длина отрезков на проекции будет различаться в зависимости от расстояния от ребра до центральной точки проекции. Аналогично на рисунке А внешний квадрат соответствует грани, которая ближе к источнику света, а внутренний — той грани, которая дальше.

Как и для куба, можно получить разные центральные проекции гиперкуба в нашем трехмерном пространстве в зависимости от положения источника света в четырехмерном пространстве. Проекция гиперкуба, изображенного на рисунке Б, соответствует рисунку А. Как и в трехмерном случае, внешний куб представляет собой кубическую грань гиперкуба, которая расположена ближе к центральной точке проекции, в то время как внутренний куб является образом дальней кубической грани.

Одним из самых интересных примеров визуализации гиперкуба является фильм Томаса Бэнчоффа и Рихарда Страусса «Гиперкуб: проекции и сечения», который показывает проекции гиперкуба в различных ракурсах.


Сечения гиперкуба


В прошлом при изучении морфологии цветов и различных растений ботаники использовали особый метод, состоящий в том, что изучаемый объект помещали в контейнер, куда наливали специальное вещество. Это вещество делало растение твердым, так что его потом можно было нарезать тонкими слоями. Вспомним, что во Флатландии такой способ использовался для передачи информации между мирами различных размерностей. Квадрат использует «небольшие срезы», чтобы описать Флатландию или чтобы показать себя королю Лайнландии. Для этого он пересекает своим телом одномерный мир Лайнландии. Аналогично Сфера, пересекая Флатландию, пытается объяснить реальность существования самой себя и трехмерной вселенной. Что же видит Квадрат, когда Сфера пересекает Флатландию? Сначала он видит точку, затем — круг (хотя круг может быть жрецом Флатландии), который увеличивается, а затем снова уменьшается до точки и исчезает. Мы бы увидели то же самое, если бы наш мир посетила Гиперсфера, только вместо круга мы бы увидели меняющийся в размере шар. Иными словами, трехмерные срезы Гиперсферы являются сферами, которые меняются в размере.

* * *

ГИПЕРКУБ В ИСКУССТВЕ

С тех пор как четвертое измерение стало частью поп-культуры, многие художники пытались воссоздать различные визуализации гиперкуба, в том числе его проекции. Гиперкуб стал центральной темой произведений многих архитекторов, художников и скульпторов. Например, одна из скульптур, которая использует центральную проекцию гиперкуба, называется Monumento a la Constitution и находится в саду музея естественных наук в Мадриде. Она изготовлена из андалузского белого мрамора, символа чистоты. Сторона ее внешнего куба равна 7,75 м, четыре боковые грани открыты, и в каждой имеется шесть ступенек, ведущих к центральному кубу, так что к нему можно подойти с четырех сторон света, что символизирует демократические ценности. Гиперкуб представляет собой более высокую реальность, чем наше трехмерное пространство, соответствующее трем конституционным принципам: свобода, равенство, братство. Идею гиперкуба можно также найти в Большой арке Дефанс (La Grande Arche de la Defense), расположенной в пригороде Парижа.

Построенное по проекту датского архитектора Отто фон Спрекельсена в 1989 г., это внушительное сооружение высотой 110 м имеет форму центральной проекции гиперкуба. В верхней части арки располагаются зал для конференций и выставочный центр, музеи и смотровая площадка, а в боковых частях — правительственные учреждения.



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги