Читаем Четвертое измерение полностью

Теперь, используя аналогии для случаев меньших размерностей, мы попробуем получить развертку гиперкуба. Как и раньше, мы откроем крышку гиперкоробки — верхнюю кубическую грань, соединенную с шестью другими гранями. Для этого мы должны отсоединить кубическую крышку от пяти граней гиперкуба, разрезав по пяти квадратам. Теперь гиперкуб открыт, но мы должны сделать дополнительные разрезы, чтобы развернуть его. Нужно разрезать по квадратам, которые соединяют те шесть кубов, что прилегали к крышке (таких разрезов будет восемь). Таким образом мы получили гиперкуб, развернутый в нашем трехмерном пространстве.




Каждый из подходов для представления гиперкуба в трехмерном пространстве дает нам часть информации о четырехмерном объекте, но скрывает другую часть информации и даже искажает ее. Например, проекции искажают форму гиперкуба, но сохраняют информацию о пространственных соотношениях элементов гиперкуба друг с другом в четвертом измерении. Сечения дают очень мало информации, так как показывают очень небольшую часть объекта, но зато без искажений, а последовательность нескольких сечений также несет в себе полезную информацию о внутренней структуре гиперкуба. Развертки показывают нам без искажений элементы гиперкуба, но мы теряем информацию о четырехмерных соотношениях элементов и изначальной форме гиперкуба.


Пространственно-временной континуум


Этот раздел, посвященный статическому пространству-времени, вроде бы не имеет ничего общего с визуализацией четвертого измерения. Однако в XIX в., когда время рассматривалось в качестве возможного четвертого измерения, этот подход также использовался для получения мысленных образов четырехмерных объектов.

Время (или движение как локальный вариант времени) являлось еще одним измерением, дополнительным к трем пространственным.

Теперь мы снова вернемся к двумерным аналогиям Флатландии для того, чтобы лучше понять, что такое пространственно-временной континуум. Хинтон сравнил его с книгой, страницами которой являются моменты времени, идущие не по порядку.

В этом случае пространственно-временной континуум будет трехмерным, пространственная часть которого является двумерным пространством, Флатландией, а время — еще одним измерением, перпендикулярным к ней. Чтобы лучше понять это, представим себе такую картину: Квадрат подходит к своему сыну Пятиугольнику, чтобы поговорить с ним, а затем снова уходит. В пространственно-временном континууме мы бы наблюдали два сближающихся, а затем удаляющихся стержня: один с пятиугольным сечением, а другой — с квадратным. Каждый момент времени этой сцены во Флатландии является двумерным сечением пространства-времени, которое, соответственно, представляет собой последовательность разных моментов времени — как пленка, состоящая из последовательности кинокадров.

Аналогично наше статическое пространство-время представляет собой четырехмерное пространство с тремя пространственными измерениями и одним временным.

Каждый момент времени является трехмерным сечением пространственно-временного континуума. В этом четырехмерном пространстве мы выглядим как стержни, конечные во времени. Статическое пространство-время объединяет в себе прошлое, настоящее и будущее, но почему тогда нельзя увидеть прошлое или будущее, если они, конечно, существуют? Более того, почему мы воспринимаем время как текущее вперед? Некоторые считают, что это свойство нашей вселенной и это надо принять как данность. Например, в своей статье «Миф о течении времени» физик Дэвид Парк писал: «… все события нашей жизни и нашей истории существуют одновременно, а иллюзия течения времени является свойством нашей вселенной, которое можно наблюдать, но нельзя объяснить…» Другие думают, что течение времени — это нечто субъективное, происходящее в нашем сознании, и что можно достичь определенного психического состояния, при котором мы можем изменить местоположение нашего сознания в пространстве-времени. Правда, приверженцев этой идеи не так уж и много.



Для Флатландии пространственно-временной континуум будет трехмерным, где Квадрат и его сын Пятиугольник выглядят как вытянутые во времени стержни.


Фильм или книга являются неплохой метафорой для пространственно-временного континуума, так как книги или фильмы находятся в нашей коллекции, даже если мы не смотрим и не читаем их. Тогда восприятие течения времени аналогично просмотру фильма или чтению книги. Но тут возникают интересные вопросы: можно ли посмотреть фильм несколько раз или даже бесконечное число раз? Возможно ли в определенный момент фильма вернуться к предыдущему эпизоду или перемотать на несколько эпизодов вперед? Если это возможно, то где находится пульт дистанционного управления временем?

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги