Читаем Четвертое измерение полностью

Дружба между французским художником Жоржем Браком (1882–1963) и Пабло Пикассо привела к появлению аналитического кубизма, приверженцами которого стали также Метценже, Глез и Аполлинер. Потом была выставка кубистов в Салоне Независимых (Salon des Independants) в 1911 г., где были представлены произведения Метценже, Глеза, Анри Ле Фоконье (1881–1946), Фернана Леже (1881–1955) и Робера Делоне (1885–1941), хотя, как ни странно, там не было ни картин Пикассо, ни картин Брака. Сторонники аналитического кубизма образовали «группу из Пюто», в то время как Брак и Пикассо развивали синтетический кубизм, где доминировал коллаж.

«Группа из Пюто», также называемая la Section d’Or («Золотое сечение») в честь геометрической пропорции, сформировалась благодаря решению нескольких художников, поэтов и критиков встречаться каждое воскресенье в студии художника Жака Биллона (1875–1963) в Пюто — пригороде Парижа. В ее состав вошли Метценже, Глез, Хуан Грис из Мадрида (1887–1927), Ле Фоконье, Леже, Делон, три брата Жак Виллон, Раймон Дюшан-Виллон (1876–1918) и Марсель Дюшан (1887–1968), а также Франсис Пикабия (1879–1953), чешский теософ Франтишек Купка (1871–1957) и Аполлинер.

* * *

ПРИНСЕ, МАТЕМАТИК КУБИЗМА

Математик Морис Принсе (1875–1973) работал страховым агентом, но был важной фигурой среди кубистов и даже заслужил титул «математик кубизма». Познакомившись с Пикассо, он присоединился к его группе, а позже — к группе из Пюто. Он часто давал неофициальные консультации по четвертому измерению и неевклидовой геометрии. В своих мемуарах Метценже написал: «Морис Принсе часто бывал у нас… Он воспринимал математику как художник, а многомерные пространства рассматривал с точки зрения эстетики. Ему нравилось, когда ему удавалось заинтересовать художников новыми взглядами на пространство, открытыми Шлегелем и другими. И он в этом преуспел».

* * *

Каждый из кубистов имел свой собственный характерный стиль, но одним из общих интересов членов группы была геометрия. Если посмотреть на их работы, можно заметить использование четвертого измерения, основных геометрических фигур, золотого сечения и других геометрических элементов. На собраниях группы из Пюто часто бывал математик Принсе, который рассказывал художникам о геометрии, в частности о четвертом измерении и неевклидовых геометриях. Именно благодаря ему они познакомились с работами Анри Пуанкаре и Эспри Жуффре.

Большое значение для популяризации четвертого измерения имел научно-фантастический роман Гастона де Павловского «Путешествие в страну четвертого измерения». Картина Жана Метценже, которая была на выставке 1913 г., но в настоящее время потеряна, называлась «Мертвая природа (четвертое измерение)».

* * *

ЗОЛОТОЕ СЕЧЕНИЕ

Золотое сечение, золотая пропорция или божественная пропорция — это геометрическая пропорция, вызывавшая большой интерес в мире культуры и искусства.

Золотое сечение было определено еще в «Началах» Евклида следующим образом: золотое сечение — это такое деление целого отрезка на две неравные части а и Ь, при котором большая часть так относится к целому, как меньшая — к большей. С помощью формулы это записывается так:


Если мы обозначим это отношение Ф = a/b, то предыдущее уравнение может быть записано как уравнение второй степени ФФ 0, положительным решением которого является число



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги