Читаем Четвертое измерение полностью

Кроме того, прямоугольник со сторонами а и Ь называется «золотым прямоугольником», если длины его сторон соотносятся в золотой пропорции. Это соотношение использовалось в греческих и египетских канонах красоты, а в эпоху Возрождения привлекало интерес не только математиков, таких как Лука Пачоли, но и художников, в том числе Леонардо да Винчи.

С того времени золотое сечение стало частью культуры. Жак Виллон наряду с другими кубистами заинтересовался им благодаря французскому переводу «Трактата о живописи» Леонардо да Винчи в 1910 г. Именно интерес к этой книге участников группы Пюто объясняет ее название — la Section d'Or («Золотое сечение»), хотя только два члена группы часто использовали золотое сечение в своих работах — Виллон и Грис. Также иногда эта пропорция появлялась у Метценже и Глеза.



Хуан Грис часто использовал золотое сечение в своих работах, например на картинах «Портрет Жермены Рейналь» и «Мужчина в кафе»(вверху), а также «Сидящий Арлекин».


Марсель Дюшан


Марсель Дюшан был одним из членов группы из Пюто, особенно интересовавшихся математикой и четвертым измерением. Его подход отличался от подхода других кубистов тем, что Дюшан пытался визуализировать четвертое измерение собственными художественными средствами, применяя математические методы чаще, чем другие художники.

Приведем отрывок из «Диалога с Марселем Дюшаном» (1966) Пьера Кабана:

«Пьер Кабан: Ваши знания математики удивительны, тем более если учесть, что у вас нет специального образования.

Дюшан: Не совсем так. В то время нас интересовало именно четвертое измерение. В „Зеленом ящике" есть много записей о четвертом измерении. Вы помните человека, кажется, его звали Поволовский [имеется в виду Павловский]? Он был редактором на улице Бонапарта. Я забыл его имя. Он писал статьи в журналы о четвертом измерении, приводя аналогии с плоскими двумерными существами… Это было действительно забавно, даже в период кубизма с Принсе.

Пьер Кабан: Принсе был псевдоматематиком, он иронизировал…

Дюшан: Совершенно верно. Мы были не настоящие математики, поэтому мы так верили Принсе. Он производил впечатление осведомленного человека».

Первая из трех картин, которые иллюстрируют интерес Марселя Дюшана к четвертому измерению, — это «Портрет шахматистов» (1911). Из записок Дюшана мы знаем, что он читал работы Пуанкаре и Эспри Жуффре, а также Гастона де Павловского.

Жуффре использовал шахматы в качестве метафоры для визуализации четвертого измерения, сравнивая его с мыслительным процессом шахматиста, который играет одновременно несколько партий вслепую, то есть не глядя на шахматные доски. Темой этой картины является мыслительный процесс шахматиста, хотя тот играет только одну партию. Кроме того, Дюшан, который сам был заядлым шахматистом, сказал в интервью, что он поместил своих игроков в бесконечное пространство (как мы уже говорили, теоретики кубизма связывали четвертое измерение с бесконечным пространством).

Впоследствии Дюшан начал исследовать статическое представление движения, что является одним из методов визуализации четвертого измерения, то есть статического, а не релятивистского пространства-времени. Он говорил о так называемом элементарном параллелизме: «…Поверхность образуется повторением линий точно так, как линия образуется повторяющимися в одном направлении точками. Та же самая аналогия используется при переходе от плоскости к пространству. Непрерывное повторение п-мерных пространств приводит к (n + 1) — мерному пространству».

Дюшан сам пришел к теории Хинтона и других философов, которая описывает гиперкуб как результат движения куба в дополнительном измерении. Картиной этого периода, наилучшим образом отражающей его элементарный параллелизм, является «Обнаженная, спускающаяся по лестнице. № 2» (1912).



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги