Читаем Четыре жизни академика Берга полностью

Сначала казалось, что без участия математиков просто невозможно составить программу. Этот взгляд базировался на убеждении, что электронные машины могут решать только те задачи, которые подчиняются законам формальной логики, то есть четким математическим правилам. А такие задачи выражаются через элементарные логические комбинации и простые арифметические операции. Лишь постепенно конструкторы поняли, что машины могут обучаться в процессе работы. Что им вовсе не обязательно следовать за первоначально заданной программой действий, что саму программу они могут менять на основании собственного опыта.

Составляя программы, способные видоизменяться в процессе работы, ученые постепенно добились возможности применения управляющих машин даже в тех случаях, когда регулируемый процесс еще не изучен математически и составить исчерпывающую программу действий машины невозможно.

В программе машины оказалось даже возможным предусмотреть оценку будущего поведения управляемого объекта. Для этого машина должна просчитать несколько вариантов его поведения при различных возможных изменениях внутри системы и во внешней среде. Получив различные результаты и оценив их с точки зрения заранее заданного критерия (например, по минимуму расхода горючего или по качеству продукции), управляющая машина выберет наилучший вариант. Такая машина как бы приспосабливается к изменениям условий, к управляемому объекту. Она запоминает лучший вариант управления, обучается в процессе работы, накапливает опыт, знания, то есть действует как человек. Как человек, она сама с течением времени постепенно приобретает черты «самонастраивающейся», «самоорганизующейся» системы.

Создавая программы, предусматривающие самоорганизацию, приспособление машин, кибернетики тем самым расширяют возможности математических электронных машин за рамки формальной логики, дают возможность машине самой найти тот путь действия, который человек не может ей конкретно указать.

МОГУЩЕСТВО «ДА» И «НЕТ»

Эта удивительная особенность кибернетических машин совершенно перевернула взгляд людей на возможности техники, открыла многочисленные новые области приложения кибернетики.

На «думающие» машины обратили внимание физиологи.

А нельзя ли, решили они, использовать эти машины для изучения тех самых умственных действий человека, которые так блестяще имитируют машины? Для познания процессов, происходящих в мозгу человека, в его нервной системе? Не помогут ли они понять законы жизнедеятельности организма, процессы, протекающие в его органах, их взаимосвязь, чуткую и точную работу нервной системы, сложную и мудрую деятельность мозга, природу чувств, разума, воли, темперамента? Не научат ли машины людей управлять всеми сложными процессами в живом организме?

Точнее, нельзя ли использовать кибернетические машины в качестве моделей?

Пока ребенок подрастает и познает мир, он ломает не одну игрушку: что там внутри? Чтобы изучить работу органов, нервной системы, мозга человека, ученым, увы, было недостаточно экспериментов над животными и вскрытия трупов. Это помогало ответить далеко не на все вопросы.

Конечно, живые модели — животные и их органы — и сейчас одно из основных пособий для физиолога, изучающего человеческий организм. Но уже давно обратили на себя внимание модели физические и физико-химические, как более доступные и в некоторых случаях точно имитирующие многие явления в живом организме.

Так были созданы модели сердца, почек, легких. Они не только позволили глубоко изучить работу этих жизненно важных органов, но и послужили прообразом искусственных сердец, почек и легких, спасших уже не одну человеческую жизнь.

Но с моделированием нервной системы дело обстояло куда сложнее, хотя первую физическую модель нервного возбуждения ученые испытали еще лет сто назад. Они пытались делать выводы о принципах распространения нервных импульсов по нервным стволам, наблюдая, как ведет себя железная проволока в азотной кислоте. А в начале восьмидесятых годов прошлого века для исследования деятельности центральной нервной системы физики использовали новейшее изобретение того времени — телефон. Но все это было слишком примитивно.

Мысль об использовании электронных машин в качестве моделей пришла, конечно, не случайно.

При описании действий электронных машин невольно приходилось применять слова, которые до некоторых пор употреблялись только по отношению к человеку: машина вычисляет, переводит, анализирует, запоминает, предсказывает… Ее действия поражали осмысленностью и целеустремленностью.

Но не только при упрощенном описании, даже при глубоком изучении работы электронных машин ученым бросилась в глаза полная иллюзия того, что они функционируют, как человек. Они не могли не прийти к выводу, что иначе и быть не может: в механизме и организме, в работе электронных машин и в работе нервной системы оказалось много общего. И прежде всего принцип действия. Нерв работает по принципу «да — нет»: либо он возбужден, либо находится в покое; он или проводит импульс раздражения, или нет.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже