Дыхательный аппарат снабжен целым рядом чувствительных нервов, которые возбуждаются при прохождении воздуха по воздухоносным путям, при сокращении легких, при обеднении состава крови кислородом и обогащении его углекислотой. При вдохе легкие расширяются, по воздухоносным путям интенсивно проходит воздух; кровь пополняется кислородом, на что реагируют нервные окончания в кровеносных сосудах. Этот комплекс возбуждения по нервным волокнам передается в дыхательный центр мозга, и оттуда подаются команды, тормозящие вдох и стимулирующие выдох. Потоки возбуждений, приносимых чувствительными нервами, заставляют вдох сменяться выдохом, а выдох вдохом, регулируют глубину дыхания и его скорость.
Ритм и глубина дыхания зависят от нагрузки организма. Бегун дышит интенсивнее, чем ходок, пильщик нуждается в большем поступлении кислорода, чем чертежник. Не только физическая нагрузка влияет на дыхание. Сильное волнение, испуг нарушают его нормальный ритм. Попробуйте усилием воли дышать глубже и чаще, чем нужно организму. Это иногда приходится делать при врачебном осмотре. Но охранительные системы почти сразу заставляют вернуться к обычной норме. Дыхание, одна из важнейших функций организма, в очень малой степени поддается сознательному управлению. Попробуй не дышать — ничего не выйдет! Минута-две — и самый тренированный ныряльщик вопреки своему желанию сделает вдох. Только в сказках Шехерезады можно найти историю о том, как молодой человек забрался в постель к жестокой возлюбленной, затаил дыхание и, назло ей, умер.
…Но что это? Вы поперхнулись крошкой хлеба, и она попала «не в то горло»! Вы бьетесь в приступе кашля и — о счастье! — снова дышите как ни в чем не бывало. Кажется, чего же проще? Человек поперхнулся. Почему же он кашляет, а скажем, не поет? Или не танцует? Все, оказывается, давно решено за нас. Крошка хлеба раздражает нервные окончания в слизистой оболочке дыхательных путей. Эти датчики посылают тревожные импульсы в спасательный центр, то есть в мозг. Мозг немедленно приказывает мышцам сжаться, и они, сокращаясь, вызывают резкие выдохи (кашель). Когда крошка выбрасывается струей воздуха, сигналы бедствия прекращаются, кашель утихает. Таким образом, внутренний автоматический регулятор привел гортань в нормальное состояние.
Таких автоматических регуляторов в живом организме уйма. Не думая еще подражать природе, человек и в технике создал бесчисленное множество систем автоматического регулирования и управления. Сталеплавильная, стекловаренная, доменная печи или другой какой-нибудь агрегат или объект тоже сложные «организмы», в которых с помощью систем автоматического регулирования самоорганизуется стабильный нормальный процесс варки стекла, плавки стали или чугуна. Для управления этими сложными объектами человек искусственно охватил их разветвленной «нервной системой», состоящей из отдельных приборов, связанных в цепи автоматического регулирования. Своеобразные органы «чувств» системы — датчики — реагируют на различные изменения внутри объекта и посылают сигналы в управляющий центр, в «мозг» системы. Здесь вся поступившая информация о ходе процесса перерабатывается в информацию управляющую, которая приводит в движение «мышцы» системы: приводы заслонок, кранов, шиберов, изменяющих подачу в агрегат воздуха, топлива и сырья.
До тех пор пока для автоматического регулирования использовались автоматы, которые, были глухи к изменениям внешних условий и действовали по заранее заданной программе, никаких далеко идущих аналогий они не подсказывали. С появлением же электронных управляющих машин в технике наступила новая эра — эра машин, так же, как и человеческий организм, приспосабливающихся к внешним условиям. Конечно, физиологам не могло не броситься в глаза сходство электронных машин с человеческим организмом в принципах переработки информации, в работе цепей связи.
Они взглянули на человеческий организм как на сложную систему, перерабатывающую поступающую в него информацию. Все воздействия окружающей нас среды воспринимаются органами чувств. Они трансформируются органами зрения, слуха и осязания в нервные импульсы. Эти импульсы направляются по бесчисленным нервным волокнам, являющимся каналами связи, в мозг, который Павлов назвал «центральной станцией». Кора головного мозга человека, состоящая из миллиардов нервных клеток, анализирует массу сигналов от отдельных систем связи. Здесь, в веществе мозга, непрерывно происходит переработка информации: сигнальных импульсов — в импульсы управления. По миллиардам нервных волокон импульсы проделывают обратный путь — от мозга к мышцам.
Сведения об этих процессах частично фиксируются в памяти и используются организмом впоследствии.
Связь различных органов и отдельных участков коры головного мозга была обнаружена учеными уже давно. Если раздражать определенные области головного мозга электрическим током, то приходят в движение соответствующие группы мышц тела.