Читаем Чёрная маска из Аль-Джебры полностью

как мигом произошло приведение подобных и появился верный рыцарь — коэффициент Шесть:


6 abc.


Но что это? Оркестр замолкает… Понимаю: сейчас произойдёт перегруппировка и начнётся новое упражнение. В самом деле: минусы и плюсы покидают поле под дружные аплодисменты. Буковки снова образовали пёстрый прямоугольник. Но теперь в первом ряду стоят буквы в зелёном, во втором — в красном, в третьем — в светло-жёлтом. Они повторяют самое первое упражнение — перемножение одночленов. Только теперь все сомножители одинаковые.

И опять происходят чудеса. Как только две одинаковые буквы перемножатся, одна из них сейчас же исчезает, а на поле появляется число Два. Буква протягивает руку, и Двойка ловко вскакивает к ней на ладошку:


а2.



Вы думаете, число Два называется коэффициентом? Ничего подобного! Это показатель степени. Вы уже с ним знакомы. Ведь упражнение, которое сейчас проделывают буквы, — это возведение в степень!

Вот перемножились три b и получилось Бэ в кубе:


Ь3.


Десять с, перемножившись, образовали одночлен — Цэ в десятой степени:


с10.


Одна комбинация сменяется другой. Перед нами возникают:


а25, Ь40, с16, а6.


И вот появляется Цэ в степени эн:


сп.


Это уже что-то новое. Правда, только на первый взгляд. Мы ведь уже знаем, что буквами обозначаются числа. Цэ в энной степени означает Цэ, возведённое в любую степень. Подставьте вместо эн любое число — и ответ готов.

Музыканты после небольшой паузы снова заиграли вальс. Начались самые пластичные, самые замысловатые гимнастические упражнения: умножение многочленов на одночлен.

Вот уже образовались двучлены:


а + Ь, а + с,


потом трёхчлены:


а + b + с


и много других. Сейчас они начнут умножаться на одночлены… Но в чём дело? Произошла какая-то заминка. Музыка смолкла. Ага! Теперь всё ясно: оказывается, многочлены не могут ни на что умножаться, если их предварительно не заключить в скобки. Иначе может выйти ужасная путаница: никто не узнает, где тут одночлен, а где многочлен.

На поле появляются круглые скобки. Они становятся по бокам каждого многочлена. Ну вот, всё в порядке, можно продолжать.

Начинается представление, под названием «Хитрый обманщик».

На поле появляется выражение:


(а + Ь) с.


Цэ стучится в скобку, как в дверь.

Цэ. Хозяева дома?

А + Бэ (вместе). Да! А кто это?

Цэ. Это я, Цэ.

А + Бэ. А с вами никого нет?

Цэ (невинным голосом). Никого.

А + Бэ. Тогда входите.

Скобки открываются, Цэ входит и… раздваивается. Одно Цэ подходит к А, другое — к Бэ. И вот мы уже видим новую сумму:


ас + Ьс.



Все негодуют. Свист, крики:

— Гоните обманщика!

А + Бэ (вместе). На помощь! Спасите!!

Вбегают дружинники и выносят отчаянно сопротивляющихся Цэ за скобки. Здесь обе буквы снова превращаются в одно Цэ.

Обманщик наказан. Справедливость торжествует. На поле снова красуется прежнее выражение:


(а + Ь) с.


Пьеса имеет шумный успех. Артистов вызывают много раз, точнее, эн раз — п раз.

Сказав так, я никого не обману, и дружинникам не придётся выносить меня за скобки.

Дорогие радиослушатели! Как видно, эти упражнения никогда не кончатся, а я уже устал. Очень прошу вас, возьмите карандаши и бумагу и придумайте сами пример на перемножение многочленов.

До свидания.

Репортаж с Центрального стадиона Аль-Джебры вёл


Сева.


Пекари-жонглёры

(Снова Сева — Нулику)


Ну как, Нулик, здорово у меня вышло? Конечно, у того комментатора, который вёл передачу со стадиона, получалось лучше. А по мне сойдёт и так.

А сейчас я тебе своими словами расскажу, что было дальше.

По радио объявили: «Следующий номер нашей программы — Весёлые Пекари! Высший класс жонглирования! Перемножение и деление степеней!»

На зелёное поле выбежали три буквы Цэ. Все они были в белых поварских колпаках, у каждой палка, а на палке кольца — похоже на детские пирамидки. Только там кольца разноцветные, одно другого меньше, а здесь одинаковые, золотистые, как толстенькие поджаристые бублики.

Это и впрямь были бублики с маком! У одного пекаря — два бублика, у другого — три. У третьего колец на палке не было.

Заиграла музыка.

Первый пекарь снял с палки верхнее кольцо и ловко метнул. Кольцо очертило в воздухе плавную дугу и угодило на пустую палку третьего пекаря. Вслед за первым кольцом туда же полетело второе. То же самое сделал другой пекарь, и вот уже у третьего пекаря на палке все пять колец, а первые два пекаре остались ни с чем.

Потом жонглёры перестроились. Теперь у одного на палке было три кольца, у другого — шесть, у третьего опять ничего. Снова заиграла музыка, замелькали кольца. И опять у третьего пекаря на палке — девять бубликов, а у других — ничего.

— Чистая работа, — сказал Дэ, — ни одно колечко не упало.

— Работа-то чистая, но при чём здесь умножение степеней? — спросил я. — Не понимаю.

— А я понимаю, — похвасталась Таня. — При перемножении степеней показатели надо складывать:


с3 • с6 = с3+6 = с9.


Совершенно правильно, — подтвердил Дэ. — Число колец на палке обозначает показатель степени.

Перейти на страницу:

Все книги серии Математическая трилогия

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Философия / Образование и наука / Математика