Читаем Чёрная маска из Аль-Джебры полностью

Вдруг оратор повернулся в нашу сторону и низко нам поклонился. И все сидящие на трибунах встали и громко зааплодировали.

Мы просто не знали, куда деваться, и очень обрадовались, когда зрители снова уселись на места.

Но тут А скомандовал: «Поднять флаги!» — и все встали опять. Заиграла музыка, и в воздух взвились десятки разноцветных полотнищ. Здесь были флаги многих стран. Некоторые мы видели впервые, но одно узнали сразу: алое знамя Советского Союза.

Потом начался парад. На огромном зелёном поле появился движущийся помост. На помосте толпились костюмированные буквы и цифры

Кого только они не изображали! Были здесь и важные бородатые восточные мудрецы, и древние греки в белоснежных одеждах. Тут же сидели индийцы в белых тюрбанах и пёстрых халатах. Ах, Нулик! Это была целая костюмерная! У меня до сих пор в глазах рябит от фесок, тюбетеек, шаровар, пудреных париков, камзолов, фраков, сюртуков… Мы спросили у Дэ, что означает этот маскарад.

— Как?! Неужели вы не поняли? Перед вами учёные, которым посвящён сегодняшний праздник. Они совершают круг почёта. Впереди в белой чалме Мухаммед аль-Хварезми, рядом — Аристотель.

— А это кто? — Сева указал на длиннокудрую маску в плаще и широкополой шляпе с перьями.

— Знаменитый французский математик Вие́т. Ему мы обязаны тем, что буквы в шестнадцатом веке получили, наконец, всеобщее признание. Справа от него стоит другой великий француз — математик и философ Рене́ Дека́рт. Он жил несколько позже, в семнадцатом веке, и тоже многое сделал для Аль-Джебры.

— А вот и ещё один древний грек! — обрадовалась я.

— Вы, наверное, говорите о Диофанте? — догадался Дэ. — О, это замечательный человек! Ещё в третьем веке нашей эры он решал сложнейшие алгебраические задачи. Диофант изложил их в своей знаменитой книге «Арифметика». Правильнее было бы назвать её «Алгебра», но тогда этого слова ещё не знали.

— На полях «Арифметики» Диофанта записал свою теорему Ферма, — сказал Олег.

Дэ посмотрел на него недоверчиво:

— Вы знакомы с Ферма? С великим французским математиком?

— Мы встречались с ним на Дороге Светлого Разума, когда возвращались из Карликании. Да вот он, рядом с Диофантом!

— Ребята, ребята, смотрите, Лобачевский! — тормошил нас Сева.

— Как, вы и Николая Ивановича знаете? — ещё больше изумился Дэ.

— Конечно! — важно ответил Сева. — Он нам и письмо прислал:

«Кажется, нельзя сомневаться в истине того, что всё в мире может быть представлено числами…»

— И буквами, — добавил Дэ. — Уверен, Лобачевский не сказал так лишь потому, что это само собой разумеется.

Платформа с учёными сделала три круга и покинула поле под гром приветствий.

И тогда началось самое интересное.

Но об этом тебе расскажет Сева. Так что жди письма.


Таня.


Не думай, что я такая умная и запомнила всё, что говорил А.

Речь его была тут же отпечатана и размножена. Мне оставалось только переписать. Листочек же я сохранила на память.


Разноцветные береты

(Нулик — отряду РВТ)


Дорогие ребята! Как мне досадно, как мне обидно, что я не смог побывать на стадионе и увидать карнавал!

Но зато я сделал важное открытие. То есть открытие сделала мама. И вообще это не открытие, а давно известная вещь. Но для меня она была открытием.

Дело было так.

Мои ученики тоже решили устроить карнавал. И семь Нуликов явились в школу в новеньких беретах, — все береты разных цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Словом, семь цветов радуги. Нулики в беретах должны были идти во главе карнавального шествия. Но мне не понравилось, в каком порядке они стоят. Мне показалось, что красный берет должен быть рядом с синим, а синий — с оранжевым. А другому Нулику захотелось, чтобы жёлтый был рядом с фиолетовым. Тут каждый стал вносить свои предложения:

— Жёлтый с красным!

— Красный с синим!

— Фиолетовый с жёлтым!

Все так расшумелись, что я долго не мог их успокоить. Порешили перепробовать все перестановки. А потом большинством голосов выбрать самую красивую.

И началось! Расставили Нуликов так, как они стояли вначале: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.

Потом Нулики стали меняться местами. Красный оказался на месте оранжевого, потом перешёл на место жёлтого, потом на место зелёного и так до тех пор, пока он не очутился на месте фиолетового. Теперь впереди оказался Нулик в оранжевом берете. Мы стали его тоже постепенно передвигать вправо. Так же поступили и с зелёным, и со всеми остальными. А когда красный берет опять оказался первым слева, мы решили его оставить на месте и стали двигать вправо другие береты: жёлтый, зелёный, синий… Переставляем, переставляем… Второй день переставляем. О карнавале никто уж не заикается. Сделали 527 перестановок, а до конца — далеко.

Мы было хотели бросить, но тут появилась моя мама. Пришлось рассказать, в чём дело. А она давай смеяться! А когда отсмеялась, спросила:

— Неужели вы не знаете, что такое факториал?

Перейти на страницу:

Все книги серии Математическая трилогия

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Философия / Образование и наука / Математика