Читаем Чёрная маска из Аль-Джебры полностью

— По-моему, — сказал я, — решение должно быть таким же, как и в предыдущей задаче. Только та задача была в числах, а мы её изобразим буквами. Снова примем за Икс число часов, необходимое, чтобы закончить работу, а всю работу — за единицу.

— Так-так-так, — подбадривал Составитель.

Теперь рассуждала Таня:

— Очевидно, первый экскаватор совершит за час 1/a часть работы. Это, наверное, читается так: одну атую часть работы?

— Хорошо, хорошо.

— Тогда второй, — сказал Сева, — за час совершит одну бэтую: 1/b, а третий одну цэтую: 1/с часть работы. А все вместе они выроют за час сумму этих дробей:


1/a + 1/b + 1/c.


Теперь нетрудно составить уравнение, — ведь за икс часов они выполняют работу в икс раз большую:


x(1/a + 1/b + 1/c).


И всё это должно быть равно единице:


x(1/a+ 1/b + 1/c) = 1.



— Вот вы и составили уравнение, — похвалил Составитель.

— Теперь приведём подобные, — сказал Сева. Вспомнил, наверное, как он недавно оплошал.

— Нет, — возразил Составитель, — здесь я не вижу никаких подобных. Просто надо сложить три дроби, которые стоят в скобках. Для этого приведём их к общему знаменателю и введём дополнительные множители у каждой дроби.

— Это мы знаем, — вмешалась Таня и тут же написала:


1/a + 1/b + 1/c = bc/abc + ac/abc + ab/abc = (bc + ac + ab)/abc


или


x((bc + ac + ab)/abc)  = 1


— Вот какой огромный коэффициент оказался у Икса! — заметил Сева. — С таким провожатым ничего не страшно.

— Что же остаётся сделать, чтобы найти Икс? — спросил Составитель.

— Разделить правую часть уравнения — единицу — на этот коэффициент, — ответила Таня.


x = 1:((bc + ac + ab)/abc)


С этим она справилась быстро;


x = abc/(bc + ac + ab)



Икс подошёл к Тане и поклонился, помахав вместо шляпы чёрной маской. Д’Артаньян, да и только!

— Вот вам и уравнение, пригодное для любых трёх экскаваторов, — сказал напоследок Составитель. — Может быть, хотите проверить?

Тут уж пришёл на Севину улицу праздник. Подставлять — его любимое занятие. Вместо а, b и с он подставил числа из предыдущей задачи — 4, 3 и 12:


(4 • 3 • 12)/(3 • 12 + 4 • 12 + 4 • 3) = 144/96


Сократил дробь и получил:


x = 3/2


— Упрощение и обобщение! Упрощение и обобщение! — приговаривал он, похлопывая себя по животу, словно только что съел что-нибудь вкусное.

Потом он придумал другие числа, и опять другие. И каждый раз, вычислив Икс, выкрикивал те же слова и снова хлопал себя по животу. Забыл он, что ли, что теперь в самый раз разобраться в задаче зелёного стручка и попробовать составить уравнение самим?! Пришлось обратиться к талисману. В последнее время он что-то совсем притих — лежит себе в кармане и помалкивает. Видно, не считает нужным вмешиваться. Я вынул его и поднёс к самому Севиному носу. Увидев стручок, Сева снова хлопнул себя — на этот раз по лбу, — и через несколько минут мы уже сидели на скамейке в Парке Науки и Отдыха.

Ну вот и всё пока. Наберись терпения и подожди следующего письма. Так всегда делают в журналах — прерывают рассказ на самом интересном месте и пишут: «Продолжение следует».


Олег.


Пончик на крючке

(Нулик — отряду РВТ)


Дорогие ребята! Вся наша школа страшно волнуется. Как-то вы раскроете тайну Чёрной Маски? Но больше всех переживаю я: может быть, сейчас вы уже расколдовываете моего незнакомца. Когда чего-нибудь ждёшь, время тянется ужасно медленно. Прямо не знаешь, куда деваться. Вот мы и решили обмануть время и чем-нибудь заняться.

А так как на уме у нас только составление уравнений, мы захотели сами придумать какую-нибудь задачу.

Эту мысль нам подсказал Пончик. Я с ним очень подружился. Не могу даже подумать, что скоро нам придётся расстаться!

Так вот, я заметил, что путь в Аль-Джебру и обратно занимает у Пончика всё больше времени. Каждый раз он всё дольше задерживается в дороге с письмами. Наверное, потому, подумал я, что вы постоянно продвигаетесь вперёд. Последний раз Пончик вернулся только через тридцать четыре часа.

Мы решили выяснить, как далеко вы ушли. Расставили наблюдателей с часами, и они подсчитали, что Пончик мчится прямо-таки с космической скоростью: двенадцать километров в час!

Потом мы стали думать, сколько времени он проводит у вас в Аль-Джебре. Наверное, столько же, сколько и у нас. Минут сорок.

Теперь слушайте, как мы составили уравнение.

Во-первых, что мы ищем? Мы ищем расстояние. Его-то и приняли за икс. А так как Пончик бежит со скоростью двенадцать километров в час, то на путь к вам он затратит x/12 часов, или (1/12)х часов. Стало быть, на два конца уйдёт вдвое больше времени, то есть (2/12)х часов.

Прибавим к этому 40 минут, которые Пончик пробудет в Аль-Джебре. Получится:


2/12х +40


Вот сколько часов займёт всё его путешествие.

— Ерунда какая-то, — сказал один Нулик. — Прежде считали в часах, а потом прибавили 40 минут. Так нельзя. Выбирайте что-нибудь одно: либо часы, либо минуты.

Пришлось поставить вопрос на голосование. Большинство было за то, чтобы превратить минуты в часы.

Перейти на страницу:

Все книги серии Математическая трилогия

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Философия / Образование и наука / Математика