Теперь вернемся к вопросу о природе математики и причинах ее эффективности; по моему мнению, здесь следует применить комплементарность такого же типа. Да, математика была изобретена в том смысле, в каком «правила игры» – наборы аксиом – заданы человеком. Однако стоило нам ее изобрести, и она зажила собственной жизнью, и людям пришлось, и до сих пор приходится, исследовать все ее свойства – сообразно духу платонизма. Бесконечный перечень внезапных появлений золотого сечения, бесчисленные математические связи чисел Фибоначчи и тот факт, что мы до сих пор не знаем, бесконечно ли количество простых чисел Фибоначчи, – свидетельства этого поиска открытий.
Вольфрам придерживается очень похожих взглядов. Я спрашивал его, как он считает, «изобрели» математику или «открыли». Он ответил: «Если бы не было особого выбора и нам пришлось принять именно эту систему законов и правил, имело бы смысл говорить, что ее открыли, но поскольку выбор был, и еще какой, а наша математика основана исключительно на исторической договоренности, я бы сказал, что ее изобрели». Ключевые слова – «историческая договоренность»: они заставляют предположить, что система аксиом, на которых основана наша математика, возникла случайно на основе арифметики и геометрии древних вавилонян. Это тут же наталкивает на два вопроса: (1) Почему вавилоняне развивали именно эти дисциплины, а не стали разрабатывать другие наборы правил? И, перефразируя вопрос о том, как математика описывает мироздание: (2) Почему эти дисциплины и их следствия вообще пригодились в физике?
Интересно, что ответы на оба вопроса, вероятно, взаимосвязаны. Возможно, математику как таковую породило наше субъективное восприятие устройства природы. Не исключено, что геометрия попросту отражает человеческую способность легко распознавать линии, грани и кривые. А арифметика – человеческую способность группировать дискретные объекты. При такой картине мира математика, которой мы располагаем, – следствие