Понятие химического элемента возникло, когда после многовековых попыток алхимиков получить золото из неблагородных веществ начала свой победный путь научная химия. Первым великим противником алхимии был ирландский естествоиспытатель Роберт Бойль. В 1661 г. он опубликовал книгу под заглавием «Химик-скептик», в которой разделался с шарлатанами своего времени и высмеял потуги алхимиков изготовить золото из подручных материалов. После проведения множества опытов Бойль обнаружил, из чего состоит «вещество творения» — по образному выражению физика Хайнца Хабера. Бойль утверждал, что природа создала несколько элементарных веществ. Их существование фундаментально, и их невозможно создать искусственно.
Эти первородные вещества Бойль назвал элементами. По его мнению, была обречена на провал любая попытка получить золото из свинца или ртути. Золото — элемент и, таким образом, не может быть расщеплено или создано заново.
Другие вещества, например вода или киноварь, являются не элементами, а химическими соединениями. Если приложить к воде электрическое напряжение, то она расщепится на водород и кислород. Если нагреть киноварь в пламени, то она распадется на ртуть и серу.
То, что относится в природе к веществам, относится в математике к числам. Все числа тоже состоят из первородных «строительных камней». Однако в математике надо различать, можно ли создавать новые числа с помощью простейшего арифметического действия — сложения, или с помощью несколько более сложного действия — умножения.
Возникновение чисел в результате сложения представляется весьма простым. Начинают с первого числа — единицы. Поочередно прибавляя к ней по единице, можно получить все числа — 1, 2, 3, 4… Таким образом, есть только один «элемент», из которого получаются все числа, и этот элемент — единица.
Возникновение чисел в результате умножения — процесс несколько более запутанный и сложный, но зато и более интересный. Мы снова будем исходить из единицы как из первого числа. Однако, умножая единицу саму на себя сколь угодно большое число раз, мы не получим ничего, кроме единицы.
Первым настоящим «элементом» чисел — с точки зрения умножения — является число 2. Из него возникает целый ряд чисел: 2 × 2 = 2² = 4, 2 × 2 × 2 = 2³ = 8, 2 × 2 × 2 × 2 = 24
= 16 и т. д. Но получить таким образом все числа невозможно. Наименьшее число, отсутствующее в этом списке, — это 3. Поэтому за еще один «элемент» числового царства была принята и тройка — наряду с двойкой. Такие «элементы», как 2 и 3, в математике называют простыми числами (на латыни они называются также первичными). Действительно, начиная с простых чисел, из них путем умножения получают все остальные числа.С помощью чисел 2 и 3 в результате умножения получают числа 2 × 2 = 4, 2 × 3 = 6, 2 × 2 × 2 = 8, 3 × 3 = 9, 2 × 2 × 3 = 12 и т. д. Как мы видим, так снова получаются не все числа. В этом списке отсутствуют 5 и 7. Они тоже являются простыми.
Величайшее озарение снизошло на двух греческих ученых — Евклида из Александрии и Эратосфена из Кирены. Оба принадлежали к поколению, родившемуся после Александра Македонского, и оба работали в Александрийской библиотеке.
Евклид выяснил, что из
Растолкуем рассуждения Евклида на конкретном примере: допустим, некто утверждает, что все простые числа исчерпываются списком из 2, 3, 5, 7, 11 и 13. Других простых чисел якобы не существует. Тогда, возражает Евклид, число 2 × 3 × 5 × 7 × 11 × 13 + 1, равное 30 031, можно было бы представить как произведение простых чисел из этого конечного списка. Но очевидно, что это неверно. Число 30 031 не делится ни на одно простое число из нашего списка, при любом делителе мы получим остаток, равный единице. Поскольку же число 30 031 не может быть записано как произведение простых чисел из списка 2, 3, 5, 7, 11, 13, постольку простых чисел должно быть больше, чем их есть в списке. Помимо того, заметим, что в список не входят простые числа 59 и 509, а именно их перемножение дает в результате 30 031, то есть 59 × 509 = 30 031.
Эратосфену удалось создать таблицу простых чисел в промежутке между 2 и 100. Вот этот список: