Читаем Что, если Ламарк прав? Иммуногенетика и эволюция полностью

Большая часть информации о клеточных и молекулярных процессах в иммунной системе получена экспериментальной иммунологией в опытах с иммунизацией мышей инбредных линий. Также много данных получено в клинических наблюдениях; сейчас мы знаем, что практически любая клетка, молекула и ген, обнаруженные у мышей, существуют и у человека. Хотя на других позвоночных проведено гораздо меньше исследований, очевидно, что при переходе от холоднокровных хрящевых рыб к теплокровным наземным животным сложность иммунной системы возрастала. Например, мы знаем, что генетическая стратегия, используемая для сохранения длинных последовательностей ДНК, кодирующих большое число различных антител у акул, менее экономична, чем у мышей и человека. У кроликов последовательности ДНК используются еще более эффективно. Однако самая эффективная система описана у кур и других птиц. Это станет понятным, когда мы обсудим уникальную природу генов, кодирующих антитела.

Структура антител

Теперь кратко рассмотрим структуру молекулы антитела. Все антитела имеют общий план строения — это белки, состоящие из нескольких субъединиц. На рис. 3.2 показано строение наиболее обычного антитела, называемого IgG. Эта структура была впервые описана в 1960-е годы в лаборатории Джералда Эдель-мана (Edelman) и Родни Портера ( Porter), которые были удостоены Нобелевской премии в 1972 г. Антигенсвязывающий центр состоит из вариабельных (V) областей тяжелой (Н) и легкой (L) белковых цепей, объединенных в HL-гетеродимер. Каждая молекула антитела состоит из двух идентичных HL ге-теродимеров, кроме пентамера IgM, у которого десять HL-гете-родимеров (рис. 3.2 и 3.5). Константная (постоянная) С-область молекулы запускает лизис (разрушение) или фагоцитоз (поглощение фагоцитом) чужих бактериальных клеток и частиц после связывания с ними антитела (рис. 3.1).

Рис. 3.5. Строение пентамерной молекулы IgМ антитела, состоящей из 10 HL-гетеродимеров (5 мономеров молекулы IgМ). Подробности в табл. 3.1. Каждый антигенсвязывающий центр имеет невысокую аффинность, но связывание во многих центрах увеличивает среднюю авидность антитела (см. рис. 3.7).

По правилам традиционной генетики для кодирования Н-цепи антитела нужен один ген, а для кодирования L-цепи — другой. Достаточно ли в нашем геноме ДНК для кодирования всех специфичных антител (скажем, миллиона)? Этот важный вопрос был поставлен в 1960-е годы Мелвином Коном (Cohn) и другими учеными сразу после расшифровки генетического кода. Этот вопрос и проблема механизма аутотолерантности заставили усилить внимание к стратегии, которой должна следовать иммунная система при создании того разнообразия связывающих антигены рецепторов, которое необходимо для борьбы с инфекционными заболеваниями. Стратегия ли это «зародышевой линии», при которой все специфичные антитела закодированы в яйцеклетках и сперматозоидах? Или же иммунная система использует особую «соматическую» стратегию, при которой гены в лимфоцитах мутируют или случайно рекомбинируют, образуя дополнительное разнообразие в репертуаре HL-центров?

В 1960-е и начале 1970-х годов среди ученых, придерживающихся этих двух принципиально различных мнений, происходили кратковременные, но частые теоретические сражения. Тем не менее к концу 1970-х годов благодаря молекулярно-ге-нетаческим работам Сусуми Тонегава (Tonegawa), получившего в 1987 г. Нобелевскую премию, эта проблема была в основном решена. Сейчас мы знаем, что часть разнообразия создается генами зародышевой линии, но случайные соматические процессы (рекомбинация и мутация) также необходимы для образования гигантского разнообразия антител и рецепторов Т-клеток. То есть, в течение жизни наш организм «учится» бороться с многочисленными захватчиками и создает в лимфоцитах много новых ДНК-последовательностей, кодирующих антитела. Далее мы обсудим данные, указывающие на то, что ДНК-последовательности из лимфоцитов могут быть включены в половые клетки и переданы следующим поколениям.

Перейти на страницу:

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов
Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука