Когда мы представляем себе мыслящие машины, то обычно думаем о более совершенных технологиях: об устройствах, которые контролируют давление, уровень холестерина или сердцебиение. Мне же представляется кое-что иное. Революция РД меньше касается технологий и больше относится к психологии. То есть она предполагает, что надо думать о благе пациента и о том, как обеспечить ему наилучший уход, вместо того чтобы заботиться о доходности.
О’кей. Вы возразите, что коммерческие клиники с легкостью перепрограммируют роботов, чтобы они максимизировали прибыли, а не пользу для вашего здоровья. Вы нащупали самое больное место нашей системы здравоохранения. Но есть один психологический фактор, который, вероятно, поможет. Пациенты обычно не задают вопросов во время консультаций с врачом-человеком, потому что верят в поговорку «Доверяй своему врачу». Но это не обязательно относится и к роботам. Есть шанс, что, пожав ледяную руку РД, пациент начнет думать своей головой. А заставлять людей мыслить самостоятельно — это лучшее из того, что может сделать машина.
Смогут ли машины стать такими же умными, как трехлетние дети?
Машина способна обыграть Каспарова, но может ли она сравниться умом с трехлетним малышом?
Обучение стало основой нового подъема ИИ. Но лучшие ученики во вселенной — это, определенно, человеческие дети. В ходе последних 10 лет изучающие развитие когнитивисты, часто работающие совместно со специалистами по теории вычислительных систем, пытаются выяснить, каким образом детям удается так много всего выучить за столь короткое время.
Удивительно, как сложно предсказать при создании искусственного интеллекта, что будет сделать легко, а что — сложно. Сперва мы думали, что вещи, которыми занимаются умнейшие из людей, вроде игры в шахматы или доказательства теорем — весь этот экстремальный спорт для «высоколобых» — окажутся самыми сложными для компьютеров. В действительности они оказались легкими. А вот то, что может сделать любой дурак, к примеру опознать предмет или поднять его, гораздо труднее. Оказывается, намного проще смоделировать рассуждения хорошо подготовленного взрослого специалиста, чем процесс обучения самого обычного ребенка. Так где же машины, догоняющие по способностям трехлетних детей, и какие типы обучения для них все еще недосягаемы?
За последние 15 лет мы выяснили, что даже младенцы удивительно хорошо справляются с обнаружением статистических паттернов. И специалисты по вычислительным системам изобрели машины, которые тоже исключительно хорошо справляются со статистическим обучением. Технологии вроде глубинного обучения обнаруживают даже очень сложные закономерности в огромных массивах данных. В результате компьютеры вдруг научились делать такое, что раньше для них было невозможно, например давать правильные заголовки для картинок из интернета.
Проблема с таким типом чисто статистического машинного обучения заключается в том, что оно зависит от огромного объема данных, причем они должны быть предварительно обработаны человеческим мозгом. Компьютеры могут распознать картинку из интернета только потому, что миллионы реальных людей редуцировали невероятно сложный набор данных со своей сетчатки до крайне стилизованного, ограниченного и упрощенного снимка со своим котейкой в Instagram, а также дали изображению совершенно определенный заголовок. Антиутопия из одного простого факта: на самом деле все мы — компьютеры Google, пребывающие под наркозом иллюзии, что нам просто нравятся картинки с котиками. Однако даже с такой помощью машинам все еще требуются огромные массивы данных и предельно сложные вычисления, чтобы посмотреть на новое изображение и сказать: «Киса!», а детям для этого нужно дать всего лишь пару примеров.
Кроме того, уровень обобщения для такого статистического обучения ограничен, будь вы ребенком, компьютером или ученым. Более мощный способ познания — формулировать гипотезы о том, как устроен мир, и проверять, насколько они согласуются с фактами. Тихо Браге, Google Scholar[76] своего времени, объединил огромный объем данных астрономических наблюдений и смог использовать их для того, чтобы предсказывать положение звезд в будущем. Но Иоганн Кеплер благодаря своей теории смог делать неожиданные, масштабные, совершенно инновационные прогнозы, находившиеся далеко за пределами кругозора Браге. Дошкольники делают то же самое.