Читаем Что мы думаем о машинах, которые думают. Ведущие мировые ученые об искусственном интеллекте полностью

Вторая шутка взята у Аббы Эвена, который был наиболее известен в Соединенных Штатах, когда служил послом Израиля в ООН. Эвена однажды спросили, думает ли он, что Израиль перейдет на пятидневную рабочую неделю. Формально она начинается там в воскресенье утром и продолжается до полудня в пятницу, хотя значительная часть «работы», выполняемой в ходе этих пяти с половиной дней, похоже, делается в кофейнях. Эвен ответил так: «Не всё сразу. Давайте начнем с четырех дней, а там видно будет».

В этих шутках ухвачено многое из того, что я думаю об угрозе захвата машинами важных социальных функций и о восстании машин. Как и Тверски, я больше знаю о природной тупости, чем об искусственном интеллекте, так что мне не на чем построить свое мнение о том, могут ли машины мыслить, и если так, то могут ли их мысли быть опасными для людей. Оставлю этот вопрос кому-нибудь более компетентному. Как любой из тех, кто следит за финансовыми рынками, я осведомлен о таких инцидентах, как «мгновенный обвал» в 2010 году, когда несовершенные биржевые алгоритмы неожиданно вызвали быстрое падение котировок, а через несколько минут уже работали нормально, как ни в чем не бывало. Но этот пример иллюстрирует скорее искусственную тупость, а не сверхинтеллект. Если люди продолжат писать программы, всегда останется риск, что какие-то важные меры безопасности окажутся упущены. Поэтому да, компьютеры могут все испортить, прямо как люди со «слишком толстыми пальцами» могут случайно дать ошибочную команду совершить покупку или продажу на гигантскую сумму денег.

Тем не менее страхи по поводу того, что компьютеры захватят мир, преждевременны. Меня больше беспокоит упрямое нежелание многих сегментов общества позволить компьютерам взять на себя задачи, которые простые модели выполняют заметно лучше, чем люди. В работах по этой теме, где пионерами были такие психологи, как недавно почивший Робин Доуз, описывается, что практически с любой стандартной задачей — обнаружить мошенничество, оценить степень злокачественности опухоли, нанять сотрудников — лучше справляется простая статистическая модель, а не ведущие эксперты в той или иной сфере. Позвольте привести два наглядных примера: один из области управления персоналом, а другой из мира спорта.

Давайте сначала рассмотрим досадно вездесущие собеседования, считающиеся важным, часто самым важным фактором, определяющим, кого именно возьмут на работу. В школе бизнеса имени Бута при Чикагском университете, где я преподаю, рекрутеры посвящают бесчисленные часы собеседованиям со студентами из кампуса и в результате отбирают тех немногих, кто получит приглашение встретиться с работодателем, чтобы пройти через еще одну серию продолжительных собеседований. Однако проведенные исследования показывают, что собеседования практически бесполезны в плане прогнозирования того, насколько хорошо кандидат будет справляться со своей работой.

В сравнении со статистической моделью, основанной на объективных показателях, таких как оценки за учебные курсы, имеющие отношение к рассматриваемой работе, собеседования преимущественно замутняют картину и привносят фактор предубежденности. (Статистические модели не отдают предпочтения определенной альма-матер или этнической группе, а также не обращают внимания на привлекательную внешность.)

Эти факты известны уже более четырех десятилетий, но методы найма почти не изменились. Причина проста: каждый из нас знает, что если мы проводим собеседование, то мы много узнаем о кандидате. Вполне возможно, что другие люди тут не очень хорошо справляются, но я-то не такой! Эта иллюзия, находящаяся в прямом противоречии с практическими исследованиями, означает, что мы так и будем выбирать сотрудников по старинке, как всегда делали. Мы их оцениваем, сравниваем с собой.

Одна из областей, где есть кое-какой прогресс в плане более научного подхода к подбору кандидатов для работы, — это спорт, что отражено в книге и фильме Майкла Льюиса «Человек, который изменил все» (Moneyball). Однако было бы ошибкой думать, что в том, как в спорте принимаются решения, произошла революция. Действительно, большинство профессиональных команд теперь нанимают специалистов по анализу данных, чтобы те помогали им оценивать потенциальных игроков, улучшать методы тренировки и разрабатывать стратегии. Но окончательные решения о том, какого кандидата выбрать, с кем подписать контракт и кого выпускать на поле, все еще принимают тренеры и менеджеры — скорее интуитивно, а не полагаясь на мнение штатных зубрил.

Перейти на страницу:

Все книги серии Искусственный интеллект

Роботы наступают. Развитие технологий и будущее без работы
Роботы наступают. Развитие технологий и будущее без работы

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого. Цель автора — не испугать читателя, а привлечь внимание к этим непростым темам. Эту увлекательную и содержательную книгу стоит прочитать всем, кто хочет понять, как развитие новых технологий влияет на экономические перспективы, на наших детей и на общество в целом.

Мартин Форд

Публицистика
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Homo Roboticus? Люди и машины в поисках взаимопонимания
Homo Roboticus? Люди и машины в поисках взаимопонимания

Хотим мы этого или нет, но скоро нам придется сосуществовать с автономными машинами. Уже сейчас мы тратим заметную часть времени на взаимодействие с механическими подобиями людей в видеоиграх или в виртуальных системах – от FAQbots до Siri. Кем они станут – нашими слугами, помощниками, коллегами или хозяевами? Автор пытается найти ответ на философский вопрос о будущих взаимоотношениях людей и машин и представляет читателям группу компьютерщиков, программистов, робототехников и нейробиологов, считающих, что мы подходим к переломному моменту, когда искусственный интеллект превзойдет человеческий и наш мир безвозвратно изменится. Однако место человека в этом новом мире специалисты видят по-разному, и автор знакомит нас со всем спектром мнений. Центральная тема книги – двойственность и парадоксальность, присущие деятельности разработчиков, которые то расширяют возможности человека, то заменяют людей с помощью создаваемых систем.

Джон Маркофф

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература