Читаем Что мы думаем о машинах, которые думают. Ведущие мировые ученые об искусственном интеллекте полностью

Когда-нибудь умственное развитие каждого ученика можно будет проследить с самого детства с помощью персонализированной системы глубинного обучения. Современный уровень технологии не может достичь такой степени понимания человеческого разума, но уже сейчас Facebook предпринимает попытки по созданию с помощью имеющейся огромной базы данных друзей, фотографий и лайков модели психического для каждого человека на планете.

Потому я сделаю такой вывод: чем больше будет когнитивных приспособлений, вроде шахматных программ и рекомендательных систем, тем умнее и способнее станут люди.

<p>Поверхностное обучение</p>Сет ЛлойдПреподаватель квантовой инженерии в Массачусетском технологическом институте; автор книги «Программирование Вселенной» (Programming the Universe)

Бедные, несчастные сотрудники Агентства национальной безопасности! Они шпионят за всеми (сюрприз!), что всех бесит. Но, по крайней мере, АНБ следит за нами для того, чтобы защитить нас от террористов. Прямо сейчас, когда вы читаете эти строки, где-то далеко на экране какого-то компьютера появилось всплывающее окно. В нем надпись: «Вы только что купили две тонны азотного удобрения. Тем, кто покупает две тонны азотного удобрения, также понравились вот эти детонаторы…» Amazon, Facebook, Google и Microsoft тоже за всеми шпионят. Но, поскольку такая слежка идет пользу всем нам, включая террористов, все в порядке.

Электронные шпионы — это не люди. Это машины. Шпионы-люди вряд ли стали бы так радостно предлагать самый надежный детонатор. Каким-то образом, использование искусственных разумов для анализа нашей электронной почты кажется более гигиеничным. Если виртуальные шпионы копаются в наших личных данных только для того, чтобы продать нам побольше барахла, то мы можем смириться с утратой конфиденциальности. Однако огромные вычислительные мощности направлены на то, чтобы машины пытались узнать, что у нас на уме. Общая вычислительная мощность, используемая такими компаниями, которые собирают наши с вами данные, составляет около одного эксафлопса[37] — миллиард миллиардов операций в секунду. Это как если бы электронные шпионы использовали вычислительную мощность одного современного смартфона на каждого человека на Земле.

Эксафлопс — это также общая мощность 500 самых производительных суперкомпьютеров в мире. Большая часть вычислительных мощностей в мире отведена под полезные задачи, такие как прогнозирование погоды или моделирование человеческого мозга. Довольно много машинных циклов также уходит на прогнозирование фондового рынка, взлом кодов и проектирование ядерного оружия. И все же значительную часть времени машины просто собирают нашу личную информацию, обдумывают ее и предлагают что-то купить.

Но что именно они делают, когда думают о том, что думаем мы? Они проводят связи между большими объемами личных данных, которые мы им предоставили, и находят паттерны. Какие-то из этих паттернов сложные, но большинство — довольно просты. Серьезных усилий стоит распознавание человеческой речи и расшифровка рукописного текста. На текущий момент пунктик у всех, кто интересуется разумными машинами, — это глубинное обучение. Когда я впервые услышал о нем, то очень заинтересовался идеей о том, что машины наконец-то раскроют для нас суть экзистенциальных глубинных вещей: истины, красоты и любви. Мои заблуждения быстро развеялись. Слово «глубинное» в названии технологии относится к архитектуре процесса обучения машин. Он построен на использовании множества слоев взаимосвязанных логических элементов, аналогичных глубинным слоям взаимосвязанных нейронов в мозге. Оказывается, что отличить небрежно написанные «7» и «5» — задача не из легких. В 1980-х годах первые компьютеры, построенные на принципе нейронных сетей, с этой работой не справились. Тогда исследователи, работавшие в области нейровычислительной техники, говорили, что будь у них побольше компьютеры да побольше данных для обучения, состоящих из миллионов, а не из тысяч неаккуратно написанных цифр, — вот тогда бы искусственный интеллект справился с задачей. Теперь все это есть. Глубинное обучение информационно широко — оно анализирует огромные объемы данных, — но концептуально поверхностно. Компьютеры теперь способны рассказать нам то, что наши собственные нейронные сети и так знали. Но если суперкомпьютер может отправить надписанный от руки конверт по правильному почтовому индексу, я говорю: «Так тому и быть».

Перейти на страницу:

Все книги серии Искусственный интеллект

Роботы наступают. Развитие технологий и будущее без работы
Роботы наступают. Развитие технологий и будущее без работы

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого. Цель автора — не испугать читателя, а привлечь внимание к этим непростым темам. Эту увлекательную и содержательную книгу стоит прочитать всем, кто хочет понять, как развитие новых технологий влияет на экономические перспективы, на наших детей и на общество в целом.

Мартин Форд

Публицистика
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Homo Roboticus? Люди и машины в поисках взаимопонимания
Homo Roboticus? Люди и машины в поисках взаимопонимания

Хотим мы этого или нет, но скоро нам придется сосуществовать с автономными машинами. Уже сейчас мы тратим заметную часть времени на взаимодействие с механическими подобиями людей в видеоиграх или в виртуальных системах – от FAQbots до Siri. Кем они станут – нашими слугами, помощниками, коллегами или хозяевами? Автор пытается найти ответ на философский вопрос о будущих взаимоотношениях людей и машин и представляет читателям группу компьютерщиков, программистов, робототехников и нейробиологов, считающих, что мы подходим к переломному моменту, когда искусственный интеллект превзойдет человеческий и наш мир безвозвратно изменится. Однако место человека в этом новом мире специалисты видят по-разному, и автор знакомит нас со всем спектром мнений. Центральная тема книги – двойственность и парадоксальность, присущие деятельности разработчиков, которые то расширяют возможности человека, то заменяют людей с помощью создаваемых систем.

Джон Маркофф

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература