Читаем Что мы думаем о машинах, которые думают. Ведущие мировые ученые об искусственном интеллекте полностью

В понедельник 19 октября 1987 года волна биржевых продаж, начавшаяся в Гонконге, пересекла Европу и ударила по Нью-Йорку, вызвав падение индекса Доу — Джонса на 22 %. «Черный понедельник» стал одним из величайших падений в истории финансовых рынков, и было в нем кое-что особенное. Впервые, по мнению большинства экспертов, виноваты во всем оказались компьютеры: именно алгоритмы решали, когда и сколько покупать и продавать на бирже. Компьютеры должны были помочь трейдерам минимизировать риски, но в действительности увеличивали их, поскольку двигались все в одном направлении. В то время широко обсуждалась идея о прекращении автоматизированных торгов, но в итоге этого не случилось.

Напротив, мы наблюдаем обратную тенденцию: с момента кризиса доткомов в марте 2000 года компьютеры все больше участвуют в принятии сложных решений на финансовом рынке. Они теперь просчитывают всевозможные корреляции между невероятными массивами данных. Они анализируют эмоции, выражаемые людьми в интернете, распознавая значение слов; они находят паттерны и прогнозируют поведение; им позволено автономно выбирать сделки; они создают новые машины — ПО, называемые «деривативами», которые уже ни один человек не в силах понять.

Искусственный интеллект координирует действия своеобразного коллективного разума, работая в тысячи раз быстрее, чем человеческий мозг, и это влияет на нас множеством способов. Признаки последнего кризиса появились в Соединенных Штатах в августе 2007 года, и он произвел ужасное воздействие на жизнь людей в Европе и во всем мире. Многие чрезвычайно пострадали из-за принимаемых компьютерами решений. Эндрю Росс Соркин в своей книге «Слишком большие, чтобы рухнуть» (Too Big to Fail)[60] показал, что даже самые могущественные банкиры оказались бессильны перед последствиями кризиса. Ни один человеческий мозг, по-видимому, не мог управлять ходом событий, чтобы попытаться предотвратить кризис.

Может этот пример нас научить тому, как нужно думать о мыслящих машинах?

Они автономно осмысливают контекст и принимают решения. И они контролируют множество сфер жизни человека. Это ли не начало постчеловеческой эры? Нет, мыслящие машины — человеческие творения, они созданы инженерами, программистами, математиками, экономистами, менеджерами. Не являются ли они еще одним инструментом, который мы можем использовать во вред или во благо? Нет, на самом деле особого выбора у нас нет: мы создаем машины, не думая о последствиях, мы просто обслуживаем нарратив. Эти машины сформированы нарративом, который мало кто ставил под сомнение.

Согласно этому нарративу, рынок есть лучший способ распределение ресурсов, никакое политическое решение неспособно улучшить ситуацию, риском можно управлять, неограниченно увеличивая прибыли, а банкам должно быть позволено делать все, что они пожелают. Есть только одна цель и одно мерило успеха: прибыль.

Не машины изобретали финансовый кризис, о об этом нам напоминает биржевой крах 1929 года. Без компьютеров никто не справится со сложностью современных финансовых рынков. Лучшие искусственные интеллекты создавались усилиями лучших умов благодаря крупнейшим инвестициям. Они не находятся под управлением какого-то одного человека. Они не разработаны каким-то одним человеком. Они сформированы определенным нарративом и делают этот нарратив эффективнее. И он довольно ограничен.

Если имеет значение только прибыль, экстерналии[61] не важны. Культурные, социальные и экологические экстерналии не интересуют финансовые институты. Искусственные интеллекты, сформированные этим нарративом, создадут контекст, в котором люди не будут чувствовать никакой ответственности. И тут появляется риск: машины настолько могущественны и так хорошо обслуживают нарратив, что препятствуют тому, чтобы мы задавали вопросы по поводу общей картины, снижая тем самым вероятность появления новых точек зрения на существующие проблемы. Точнее, так происходит до очередного кризиса.

То же самое верно и для других проблем. Медицина, электронная торговля, национальная и международная безопасность, даже знакомства и обмен информацией стали территориями, где начинает работать тот же вид искусственного интеллекта. Он сформирован в соответствии с узким нарративом; он имеет склонность сводить к минимуму человеческую ответственность и не учитывает экстерналии. Каким окажется медицинский искусственный интеллект? Будет ли он сформирован нарративом, который стремится спасать жизни, или тем, что экономит деньги?

О чем нам это говорит? Это говорит нам о том, что искусственный интеллект — вещь человеческая, а не постчеловеческая и что люди могут уничтожить себя и свою планету множеством способов, из которых ИИ — еще не самый извращенный.

Перейти на страницу:

Все книги серии Искусственный интеллект

Роботы наступают. Развитие технологий и будущее без работы
Роботы наступают. Развитие технологий и будущее без работы

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого. Цель автора — не испугать читателя, а привлечь внимание к этим непростым темам. Эту увлекательную и содержательную книгу стоит прочитать всем, кто хочет понять, как развитие новых технологий влияет на экономические перспективы, на наших детей и на общество в целом.

Мартин Форд

Публицистика
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Homo Roboticus? Люди и машины в поисках взаимопонимания
Homo Roboticus? Люди и машины в поисках взаимопонимания

Хотим мы этого или нет, но скоро нам придется сосуществовать с автономными машинами. Уже сейчас мы тратим заметную часть времени на взаимодействие с механическими подобиями людей в видеоиграх или в виртуальных системах – от FAQbots до Siri. Кем они станут – нашими слугами, помощниками, коллегами или хозяевами? Автор пытается найти ответ на философский вопрос о будущих взаимоотношениях людей и машин и представляет читателям группу компьютерщиков, программистов, робототехников и нейробиологов, считающих, что мы подходим к переломному моменту, когда искусственный интеллект превзойдет человеческий и наш мир безвозвратно изменится. Однако место человека в этом новом мире специалисты видят по-разному, и автор знакомит нас со всем спектром мнений. Центральная тема книги – двойственность и парадоксальность, присущие деятельности разработчиков, которые то расширяют возможности человека, то заменяют людей с помощью создаваемых систем.

Джон Маркофф

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература