Часто задают вопрос: как крупинка вещества – ядро оплодотворенной яйцеклетки – вмещает сложный код, определяющий будущее развитие организма? Упорядоченное скопление атомов, обладающее необходимой стабильностью для поддержания своей упорядоченности, выглядит единственной подходящей материальной структурой, подразумевающей возможность достаточного количества различных («изомерных») перестроек для установления сложной системы «определителей» в небольших пространственных рамках. Действительно, не слишком много атомов в такой структуре хватит для почти бесконечного числа возможных перестановок. Сравним это с азбукой Морзе. Два различных символа – точка и тире – в упорядоченных группах, имеющих не более четырех символов, позволяют получить тридцать различных обозначений. Если добавить к точке и тире третий символ и использовать группы, содержащие не более десяти символов, можно будет обозначить 88 572 различные «буквы». Увеличив число символов до пяти, а длину групп – до двадцати пяти, мы получим 372 529 029 846 191 405 «букв».
Мне возразят, что это сравнение ошибочно, поскольку символы азбуки Морзе могут иметь различный состав (например, ⋅– и ⋅⋅—), а значит, являются плохим примером изомерии. Чтобы исправить этот недостаток, давайте выберем из третьего примера только комбинации, содержащие ровно 25 символов и ровно по 5 символов каждого вида (5 точек, 5 тире и т. д.). Согласно приблизительным подсчетам, число сочетаний составит 62 330 000 000 000, где нули справа заменяют цифры, которые я не стал вычислять.
Разумеется, в реальности отнюдь не «каждая» организация группы атомов будет представлять собой возможную молекулу. Кроме того, код нельзя выбрать произвольным образом, ведь он сам должен быть действующим фактором, вызывающим развитие. С другой стороны, число, взятое нами для примера (25), очень мало, и мы допустили только простые перестановки в линейной последовательности. Я хочу проиллюстрировать факт, что молекулярные представления о гене позволяют предположить возможность того, что миниатюрный код полностью соответствует сложному и конкретному плану развития и содержит способы его реализации.
Давайте наконец сравним теоретическую картину с биологическими фактами. Очевидно, первый вопрос состоит в том, способна ли она объяснить наблюдаемую высокую стабильность. Являются ли пороговые значения, равные многократной средней тепловой энергии
Но давайте приведем числа, которые нам еще пригодятся. Отношения
дающие время жизни
0,1 с, 16 месяцев, 30 000 лет,
соответственно, при комнатной температуре будут соответствовать пороговым значениям, равным
0,9, 1,5, 1,8 электронвольт.
Нужно объяснить единицу электронвольт, которая весьма удобна для физиков, поскольку ее можно представить наглядно. Например, третье число (1,8) означает, что электрон, ускоренный напряжением около 2 вольт, приобретет достаточную энергию, чтобы при ударе вызвать переход. Для сравнения: батарейка обычного карманного фонарика дает напряжение около 3 вольт.
Эти рассуждения позволяют предположить, что изомерное изменение конфигурации в некой части нашей молекулы, вызванное случайной флуктуацией колебательной энергии, действительно может являться достаточно редким событием, чтобы интерпретировать его как спонтанную мутацию. Таким образом, используя принципы квантовой механики, мы объясняем удивительнейшую особенность мутаций, которая и привлекла внимание де Фриза, а именно их «скачкообразные» вариации без промежуточных форм.
Обнаружив повышение частоты природных мутаций под воздействием любого ионизирующего излучения, можно решить, будто естественная частота мутаций зависит от радиоактивности почвы и воздуха, а также космического излучения. Однако количественное сравнение с результатами рентгеновского исследования показывает, что «природная радиация» намного слабее и объясняет лишь небольшую часть естественных мутаций.