11. Пропавшая грамота[42]
Следующая история, которую я собираюсь затронуть, касается молекулы, которую теперь называют матричной РНК. Двуспиральная структура ДНК обеспечила нам теоретическую концепцию неоценимой важности для будущего направления исследований – ведь она не просто связывала воедино подходы, которые на первый взгляд казались вовсе не связанными между собой, но и открывала возможность радикально новых экспериментов, которые невозможно было бы помыслить, не руководствуясь моделью ДНК. К несчастью, в наших рассуждениях содержалась одна крупная ошибка. В ту пору было неясно, происходит ли какой-то синтез белка в клеточном ядре (где в основном и находится ДНК), но все указывало на то, что по большей части он осуществляется в цитоплазме. Каким-то образом информация из последовательностей ядерной ДНК должна была поступать вовне ядра, в цитоплазму. Логичное соображение, выдвинутое еще до нашей модели ДНК, состояло в том, что посредником служит РНК. На этом основывался лозунг Джима Уотсона: «ДНК производит РНК производит белок».
Было известно, что клетки, в которых идет активный синтез белка, содержат больше РНК в цитоплазме, чем клетки менее активные. К концу 1950-х гг. было доказано, что эта РНК содержится преимущественно в мелких тельцах, состоящих из молекул РНК и смеси белков – теперь их зовут рибосомами. Разве не естественно было заключить, что каждая рибосома синтезирует лишь один белок и что ее РНК и есть постулируемый гонец с грамотой? Мы исходили из того, что каждый активный ген производит (одноцепочечную) РНК-копию себя, что в ядре она упаковывается вместе с набором белков, помогающих ей функционировать, и затем отправляется в цитоплазму, где управляет синтезом конкретной полипептидной цепочки, кодируемой данной РНК. Каждая рибосома, работая совместно с транспортными молекулами РНК (см. Приложение А), каким-то образом отражает элементы генетического кода (предполагаемые, но пока не выясненные), и таким образом четырехбуквенный «язык» РНК переводится на двадцатибуквенный «язык» белков.
К тому времени мы с Сидни Бреннером уже достаточно давно обсуждали возможность доказать эту идею, выделив одну рибосому, обеспечив ее всеми необходимыми прекурсорами и продемонстрировав затем, что она синтезирует лишь один тип белка. К счастью, проблема выглядела безнадежно затруднительной, поскольку доступные в то время технологии не были достаточно чувствительными. Мы могли бы затратить много времени и сил на непростые эксперименты, не зная, что они обречены на неудачу.
Поскольку рибосомы явно выполняли важную роль, с ними проводилось много экспериментальной работы. Применяемые в этой области технологии зачастую были новыми и в силу этого вызывали недоверие, а результаты редко бывали однозначными. И все же череда неудобных «фактов» требовала рассмотрения. Рибосомная РНК в растущей бактериальной клетке как будто не делала вообще ничего и потому описывалась как «инертный продукт обмена веществ». От рибосомных молекул РНК ожидалось, что они будут разнообразными по длине, ведь длина белковых молекул сильно различается. Но экспериментальные данные указывали на то, что существуют лишь два размера молекул рибосомной РНК. Набор оснований ДНК у разных видов бактерий значительно отличается. Можно было ожидать, что их РНК-посредник несет такие же различия, но состав рибосомной РНК, считавшейся этим посредником, оказался очень сходным у всех этих различных видов. Можно было выдумывать специальные оговорки, чтобы объяснить все эти слабые места, но они заметно беспокоили нас. Мы с Сидни проводили нескончаемые часы за пересмотром данных, пытаясь понять, что же тут не так.
Прозрение явилось из совсем другого источника. Группа исследователей из Пастеровского института в Париже провела эксперимент, впоследствии известный как «опыт ПАЖАМО», поскольку авторов звали Артур Парди (приглашенный американец), Франсуа Жакоб и Жак Моно.