Теперь станет понятно, как работают пьезоэлектрические телефонные наушники, или, как часто их называют, телефоны. Здесь чаще всего используется пьезоэлемент смещения. Свободный конец элемента соединяется с конической мембраной. Переменный ток, подведенный к пьезоэлементу, вызывает колебания свободного конца, которые передаются мембране. Если ток изменяется со звуковой частотой, то будет слышен звук.
Подводная лодка вышла в море на выполнение боевого задания. Непрерывно несется вахта на шумопеленгаторной станции. Внимательно прослушивает водное пространство специалист-гидроакустик. Но что это? Еле слышный шорох в наушниках, потом громче, громче… Конечно! Шум винтов боевого корабля противника! Надо немедленно доложить об этом командиру!
И снова на помощь приходит пьезоэлектричество. Ведь микрофоны громкоговорящей связи, соединяющей командира и гидроакустика, тоже используют это явление.
В пьезоэлектрических микрофонах — приборах, служащих для превращения звука в электрические колебания звуковой частоты, применяются биморфные элементы, работающие на изгиб. Микрофон может состоять из одного или двух элементов. Для повышения чувствительности к пьезоэлементу иногда присоединяют металлическую диафрагму (рис. 36).
Существует еще одна область электроакустики, где широко применяются пьезоэлектрические устройства. Это запись звука и в частности звукосниматели для передачи и воспроизведения граммофонной записи.
Граммофонная пластинка состоит из еле видимых бороздок с извилинами. Это записан звук. Для воспроизведения его по бороздкам движется игла звукоснимателя. Следуя по извилинам, игла колеблется со звуковой частотой. Колебания иглы передаются пьезоэлектрической пластинке и преобразуются в электрический ток такой же частоты. Впоследствии ток усиливается и поступает на громкоговоритель.
Обычно в пьезоэлектрических звукоснимателях применяют один биморфный элемент, работающий на кручение. Однако существуют звукосниматели и с пьезоэлементом изгиба.
УЛЬТРАЗВУКОВОЙ ЭХОЛОТ
Работы над пьезоэлектричеством и ультразвуком натолкнули ученых на мысль об использовании гидролокатора в качестве
Раньше глубину моря определяли обыкновенным тросом, на конце которого был прикреплен груз. Лот — так называлось это приспособление — опускался с борта корабля до соприкосновения груза с морским дном. По длине опускаемой части лота и судили о глубине моря.
Ясно, что такие измерения занимали очень много времени, особенно при больших глубинах моря. Точность определения глубины была чрезвычайно низка, так как за время опускания и подъема лота корабль сносило на значительное расстояние. Кроме того, при помощи лота нельзя было определять глубину на ходу корабля.
Всех этих недостатков лишен эхолот. Этот прибор похож на гидролокатор. Различие состоит в том, что ультразвуковой луч эхолота направлен вертикально вниз, к морскому дну. Как и у гидролокатора, пьезоэлектрический излучатель эхолота посылает ультразвуковые сигналы, а в паузах между посылками принимает отраженное от дна эхо (рис. 37,
Посылки производятся через определенные промежутки времени. Момент посылки регистрируется на специальной ленте, которая движется с постоянной скоростью. Отраженный от дна эхосигнал принимается, усиливается и также регистрируется на этой ленте (рис. 37,
При помощи эхолота в настоящее время составлены подробные карты морских глубин, по которым корабль может определить свое местоположение в море.
Точность работы эхолота достаточно велика: с его помощью, например, удалось обнаружить лежащий на дне большой океанский пароход «Лузитания», потопленный немецкой подводной лодкой во время первой мировой войны. На рис. 38 приведена лента с записью эхолота. На фоне ровного профиля морского дна четко вырисовывается силуэт корабля с надстройками.
Эхолот с успехом применяется в рыбном промысле. Установлено, что рыбы отражают ультразвук. Это дает возможность при помощи эхолота обнаруживать в море или океане косяки рыб.