От клеток макрофагальной системы полиморфноядерные лейкоциты отличаются большей однородностью и отсутствием прямых кооперативных связей с другими звеньями иммунной системы, но и их фагоцитарная активность возрастает по мере развития иммунитета. Здесь же вполне уместно указать, что антимикробный потенциал лейкоцитов — напряженность их окислительного метаболизма, активность миелопероксидазы и степень бактерицидости катионного белка — Zh. M. Isin и B. M. Suleimenov [1987] увязывают с видовой чувствительностью животных к чуме.
Между обоими типами фагоцитов имеется еще одно отличие: макрофаги поглощают клетки чумного микроба независимо от того, при какой температуре они выращиваются (26 °C или 37 °C), тогда как нейтрофилы легче поглощают микробы и «расправляются» с ними, если их культивируют при 37 °C [Burrows T. W., Bacon G. A., 1956a; Cavanaugh D. C., Randall R, 1959; Janssen M. W., Surgalla M. J., 1969].
Относительно недавно появились данные о наличии у Y. pestis пилей адгезии, которые образуются микробом при рН, сравнимом с таковым в фаголизосомах. Образование пилей происходит через 18 ч. от начала контакта «апилированных» клеток штамма EV с монослоем нативных (но не инактивированных) макрофагов из перитонеального экссудата мышей и морских свинок. Очищенные пили обладают цитотоксическим действием и тормозят переваривающую активность макрофагов [Водопьянов С. О. и др., 1985]. Надо отметить, что цитотоксическое действие чумного микроба на макрофаги было уже описано [Goguen J. D. et al.,1986], однако «материальный субстрат», ответственный за этот эффект остался «за кадром». Если данные С. О. Водопьянова и соавт. подтвердятся, то можно будет говорить о наличии у чумного микроба еще одного фактора вирулентности. В то же время они послужат дальнейшим вкладом в идею о том, что свойства бактерий, о которых мы привыкли судить по результатам опытов in vitro, существенно отличаются от свойств, приобретаемых ими in vivo (см. раздел 4.1.3). Однако следует выяснить, какие взаимоотношения существуют между «пилями», описанными С. О. Водопьянов и сотр, и теми, о которых говорится в разделе о pH6Ag.
Предположение о наличии токсина у Y. pestis возникло еще у А. Иерсена вскоре после открытия им этого микроба. «Токсин чумы существует, — писал он, — я мог бы его получить из культур и я думаю его изучить позднее, но теперь (речь шла об эпидемии 1894 г. в Гонконге, примеч. авт.) чума слишком страшна, чтобы мы мечтали о чем-либо другом, как не о приготовлении противочумной сыворотки, не сосредоточившись на механизме её действия» [цит. по Щербачёву Д., 1901]. Тем не менее наличие токсина у чумного микроба было вскоре подтверждено рядом исследователей, из числа которых особого упоминания заслуживают Желтенков [1940, 1946], H. Albrecht и A. Ghon [1898], A. Lustig и G. Galeotti [1897], Markl [1898] и E. Wernike [1898]. Они доказывали наличие токсина разными методами, но общим в их работах было то, что к соответствующим препаратам были чувствительны все лабораторные животные. К сожалению, ни один из описанных тогда методов не был воспроизведен в последующем [подробнее об этом см. у Домарадского И. В., 1966].
Дискуссии вокруг чумного токсина продолжались до начала 50-х годов, когда, казалось, работа E. S. Baker и соавт. [1952] должна была положить им конец. Действительно, очень быстро после этого мышиный токсин (см. раздел 3.6) был очищен до гомогенного состояния и появилась возможность изучить механизм его действия. Однако результаты многочисленных исследований не оправдали надежд.