Я, а также мой частый коллега и эксперт по преподаванию с использованием новых технологий (и супруг) доктор Лилах Моллик, сами испытали это на себе. Когда летом 2023 года вокруг ИИ поднялась шумиха и тревога, мы оказались востребованы как люди, способные наилучшим образом сочетать знания в области педагогики с глубоким опытом создания подсказок. Крупные ИИ-компании, включая OpenAI и Microsoft, использовали наши подсказки в качестве примеров для использования в классах, а сами подсказки цитировались и передавались в образовательные учреждения по всему миру. Хотя мы не считали себя обладателями особых навыков в создании подсказок, мы обнаружили, что у нас очень хорошо получается заставлять ИИ плясать под нашу дудку. Мы не знаем, почему у нас это получается (опыт? Опыт в разработке игр и преподавании? Способность принимать "перспективу" ИИ, преподавателя и студента? Наш опыт в написании инструкций для разных аудиторий?), но это говорит о том, что может быть роль людей, которые являются экспертами в работе с ИИ в определенных областях. Мы просто еще не определили конкретные навыки или опыт, которые позволят "разговаривать" с ИИ.
Будущее с искусственным интеллектом требует, чтобы мы сами стали экспертами в этой области. Поскольку экспертные знания требуют фактов, студентам все равно придется изучать чтение, письмо, историю и все остальные базовые навыки, необходимые в XXI веке. Мы уже видели, как эти обширные знания могут помочь людям извлечь максимум пользы из ИИ. Кроме того, мы должны продолжать иметь образованных граждан, а не делегировать все наши мысли машинам. Студентам также может понадобиться начать развивать узкую направленность, выбирая область, в которой они смогут лучше работать с ИИ в качестве экспертов. В то же время общий диапазон наших способностей будет расширяться, так как ИИ будет заполнять пробелы и помогать нам повышать собственную квалификацию. Если возможности ИИ не изменятся радикально, то вполне вероятно, что ИИ действительно станет нашим со-интеллектом, помогая нам заполнять пробелы в наших собственных знаниях и подталкивая нас к тому, чтобы самим становиться лучше. Но это не единственное будущее, о котором мы должны думать.
9.
A
И КАК НАШЕ БУДУЩЕЕ
Может показаться, что эта книга полна научной фантастики, но все, что я описываю, уже произошло. Мы создали странный инопланетный разум, который не является разумным, но может удивительно хорошо его имитировать. Он обучается на огромных архивах человеческих знаний, а также на спинах низкооплачиваемых рабочих. Он может проходить тесты и действовать творчески, способный изменить наши методы работы и обучения; но он также регулярно выдумывает информацию. Вы больше не можете доверять тому, что все, что вы видите, слышите или читаете, не было создано ИИ. Все это уже произошло. Люди - ходячие и говорящие мешки с водой и микрохимикатами, которыми мы являемся, - сумели убедить хорошо организованный песок притвориться, что он думает так же, как мы.
Что будет дальше - это научная фантастика, вернее, научные выдумки, потому что существует множество возможных вариантов развития событий. Я вижу четыре четких варианта того, что произойдет в ближайшие несколько лет в мире ИИ. Однако последствия каждой из них не столь очевидны. Я хочу рассказать вам о каждой из этих возможностей и о том, как в результате будет выглядеть мир.
Давайте начнем с самого маловероятного будущего, которое, как ни тревожно, не является возможностью AGI. Гораздо менее вероятной является возможность того, что ИИ уже достиг своих пределов, но именно с этого мы и начнем.
Сценарий 1: Как бы хорошо это ни было
Что если ИИ перестанет делать огромные скачки вперед? Конечно, здесь и там могут быть небольшие улучшения, но в этом будущем они будут исчезающе малы по сравнению с огромными скачками, которые мы видели в GPT-3.5 и GPT-4. ИИ, который вы используете сейчас, действительно лучший из тех, что вы когда-либо будете использовать.
С технической точки зрения такой исход кажется нереальным. Нет причин подозревать, что мы достигли какого-то естественного предела в способности ИИ к совершенствованию. Но это не значит, что ИИ неизбежно будет становиться все умнее: исследователи выявили множество возможных проблем с архитектурой и обучением, которые в какой-то момент могут ограничить их возможности. Например, у систем ИИ могут закончиться данные для обучения; или стоимость и усилия по наращиванию вычислительной мощности для работы ИИ могут стать слишком большими, чтобы их оправдать. Однако нет достаточных доказательств того, что предел уже достигнут, и даже если бы он был достигнут, есть и другие изменения, которые можно внести в LLM, чтобы выжать из систем больше на годы вперед. И LLM - это лишь один из подходов к ИИ; другие технологии-преемники могут преодолеть эти ограничения.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии