Для начала остановимся на двух дополняющих друг друга текстах[443], написанных в то же время и рассматривающих, во-первых, нуль, а во-вторых, круг, так как эти понятия уподобляемы друг другу и не только в геометрическом плане: «Нуль и ноль» и «О круге» (1931)[444]. Сначала Хармс опровергает общепризнанную идею, что причиной существования чисел является их положение в числовом порядке. Следовательно, становятся недействительными и понятия «больше» и «меньше». Числа существуют «как таковые»[445], каждое само по себе, и именно человеческий разум их распределяет: «Это наше частное условие считать одно число больше другого, и по этому признаку мы расположим числа, создав солярный ряд. Не числа выдуманы нами, а их порядок. Многим покажется, что существо числа всецело зависит от его положения в солярном ряду, но я беру на себя смелость утверждать, что число может быть рассмотрено самостоятельно, вне порядка ряда»[446].
В числовом ряду числа, как части мира, насильно загнаны в систему произвольных взаимосвязей. Но числовой ряд, как и действительность во всей ее целостности, бесконечен, и, следовательно, его невозможно воспроизвести. И только нуль может заключать в себе понятие бесконечности: «Предполагаю и даже беру на себя смелость утверждать, что учение о бесконечном будет учением о ноле»[447]. И Хармс уточняет: «Я называю нолем, в отличие от нуля, именно то, что я под этим подразумеваю»[448].
Это утверждение Хармса можно подкрепить тем фактом, что ноль находится не только в центре, поскольку, если его расположить на линии, он становится точкой отправления двух рядов: отрицательного и положительного; а также еще и тем фактом, что ноль является одновременно символом как начала, так и конца. Это значит, что у него те же свойства, что у воды, о которой мы уже говорили в главе 1.
Хармс отмечает далее, что символ ноля — круг, и называет его «<...> наиболее совершенной геометрической фигурой»[449]. И тут же мы начинаем понимать смысл рассуждения писателя: необходимо достичь изображения совершенства, не разрушая самое совершенство. Действительно, если взять бесконечно малую точку — она неуловима, а как только она становится ощутимой — она исчезает. То же происходит и с прямой: если только задержаться на одной из этих точек, которую можно узнать, прямая перестает быть бесконечной. Они становится несовершенной по мере того, как теряет одну из своих главных особенностей. Хармс находит выход в кривой, то есть в бесконечной
Числа, которые, в свою очередь, тоже образуют прямую, также должны претерпеть эту кривизну, и только ноль способен выразить их бесконечность. Следовательно, бесконечность может быть выражена именно посредством искажения. Поразительно, как эти мысли близки к тезисам Матюшина о законах изменяемости цветов или к рассмотренным ранее теориям сдвига. И так же как у художника, именно искажение является гарантом наиболее правдивого отображения реальности: «Должен сказать, что даже наш вымышленный солярный ряд, если он хочет отвечать действительности, должен перестать быть прямой, но должен искривиться. Идеальным искривлением будет равномерное и постоянное, и при бесконечном продолжении солярный ряд превратится в круг»[451].
Но необходимо отметить еще один момент, который нам кажется важным. Хармс утверждает, что в каждой совершенной вещи всегда остается нечто минимальное, непостижимое для понимания. Если бы это было не так, то и само понятие совершенства было бы отвергнуто: «Если бы оказалась вещь, изученная до конца, то она перестала бы быть совершенной, ибо совершенно только то, что конца не имеет, т. е. бесконечно»[452].
Этот круг (ноль), к которому тяготеют приведенные рассуждения, возникает как способ