Современная физика стремится объединить две свои основные теории, квантовую и теорию относительности, в рамках единой всеобъемлющей теории субатомных частиц. Создать ее пока не удалось, но есть частные теории и модели, успешно описывающие определенные стороны субатомной реальности. В субатомной физике есть две разновидности квантово-релятивистских теорий, которые применяются в различных областях. Первая из них — группа квантовых теорий поля (см. главу 14), которые описывают электромагнитные и слабые взаимодействия; ко второй принадлежит теория S-матрицы (см. главу 17), успешно описывающая сильные взаимодействия. Главная проблема, которая до сих пор не решена, — задача объединения теории относительности и квантовой теории в рамках квантовой теории гравитации. Шагом к решению этой проблемы, возможно, станут существующие уже сейчас концепции «супергравитации»[288], но пока удовлетворительных вариантов такой теории предложено не было.
Квантовые теории поля, подробно описанные в главе 14, исходят из концепции квантового поля — фундаментальной сущности, которая может существовать в протяженной форме в виде поля, а в непротяженной — в виде частиц[289]. При этом разные типы частиц связаны с различными полями. Эти теории пришли на смену представлениям о частицах как о фундаментальных объектах и заменили его гораздо более тонкой концепцией квантовых полей. Несмотря на это, они используют понятие фундаментальных сущностей и являются поэтому полуклассическими теориями, которые не могут полностью продемонстрировать квантово-релятивистскую природу субатомной материи[290].
Квантовая электродинамика, первая из квантовых теорий поля, обязана своим успехом тому, что электромагнитные взаимодействия очень слабы и позволяют полнее поддерживать классические различия между веществом и силами взаимодействия[291]. То же можно сказать о теориях поля, описывающих слабые взаимодействия. По сути, сходство между электромагнитными и слабыми взаимодействиями только усиливается благодаря появлению новой разновидности квантовой теории поля, получившей название теорий калибровочной инвариантности. Они позволяют рассматривать оба типа взаимодействий в комплексе. В возникшей на их основе объединенной теории поля, получившей название теории Вайнберга — Салама в честь своих создателей, Стивена Вайнберга и Абдуса Салама, два типа взаимодействий остаются самостоятельными, но объединены математически с помощью калибровочной группы и получают общее наименование «электрослабых» взаимодействий.
Подход, характерный для теорий калибровочной инвариантности, распространился и на сильные взаимодействия благодаря возникновению теории поля под названием квантовая хромодинамика (КХД). Многие физики пытаются добиться ее «великого объединения» с теорией Вайнберга — Салама. Но использование теорий калибровочной инвариантности для описания сильно взаимодействующих частиц рождает немало проблем. Взаимодействия между адронами настолько сильны, что различие между частицами и силами размываются. Поэтому КХД плохо подходит для описания процессов с участием сильно взаимодействующих частиц. Исключение — специфические «явления», так называемые глубокие неэластичные процессы рассеивания, в ходе которых частицы по непонятным причинам ведут себя почти так же, как самостоятельные объекты классической физики. Физикам не удалось распространить сферу применения КХД на явления вне этой узкой области. Надежды на то, что КХД станет теоретической основой для объяснения свойств сильно взаимодействующих частиц, до сих пор не оправдались[292].
КХД — современный математический аппарат кварковой модели (см. главу 16): поля ассоциируются в ней с кварками, а слово «хромо» относится к цветам кварковых полей. Как и все теории калибровочной инвариантности, КХД возникла позже квантовой электродинамики (КЭД). В КЭД электромагнитные взаимодействия рассматриваются как обмен фотонами между заряженными частицами, а в КХД сильные взаимодействия осуществляются путем обмена «глюонами» между разноцветными кварками. Глюоны — не реальные частицы, а одна из разновидностей квантов, которые «приклеивают» кварки друг к другу (английское слово glue, от которого образовано название глюонов, имеет значение «клей», «приклеивать»), что ведет к возникновению мезонов и барионов[293].