Поразительно то, что все эти закономерности выглядят гораздо проще, если мы примем, что все адроны состоят из небольшого числа элементарных единиц, которые до сих пор не были наблюдаемы непосредственно. Эти единицы получили причудливое название кварков. Термин был впервые использован Марри Гелл-Маном[227], который заимствовал это слово из романа Джеймса Джойса «Поминки по Финнегану»[228], где была такая строка: «Три кварка для Мустера Марка». Гелл-Ман применил его для обозначения постулированных им частиц. Ему удалось объяснить большое количество таких адронных структур, как описанные выше октеты и барионные десятки, приписав трем кваркам и их антикваркам соответствующие значения квантовых чисел и составляя из них, как из кирпичиков, сочетания, чтобы получить барионы и мезоны, квантовые числа которых складываются в сумму квантовых чисел составляющих их кварков. При этом предполагается, что барионы «состоят» из трех кварков, их античастицы — из стольких же антикварков, а мезоны — из сочетания кварка и антикварка.
Простота и эффективность этой модели удивительны, но, если рассматривать кварки как реальные физические составляющие адронов, мы неизбежно столкнемся с непреодолимыми трудностями. До сих пор попытки физиков обнаружить кварки путем бомбардировки адронов частицами — «снарядами» с высокой энергией — не привели к успеху. Это может значить только одно: кварки должны быть связаны между собой очень мощными силами. Наши текущие представления о частицах и их взаимодействиях предполагают, что за этими силами должен стоять обмен другими частицами, т. е. кварки имеют некую структуру, подобно всем остальным сильно взаимодействующим частицам. Но в модели Гелл-Мана кварки рассматриваются как точечные бесструктурные частицы. Из-за этого несоответствия физикам до сих пор не удается сформулировать кварковую модель как цельную и динамическую, что одновременно объяснило бы существующую в ней симметрию и связывающие силы.
В 1970-е экспериментальная физика устроила настоящую «охоту за кварком», которая не увенчалась успехом. Если отдельные кварки существуют, то они должны быть заметны: модель Гелл-Мана требует наличия у них необычных свойств, например электрического заряда, равного 1/3 или 2/3 заряда электрона, чего не наблюдается ни у каких других частиц. Но частиц с таким зарядом обнаружить не удавалось. Эти постоянные неудачи в сочетании с серьезными теоретическими возражениями против их существования обусловили сомнения в реальности кварков.
Но кварковая модель отлично подходит для объяснения закономерностей мира частиц, хотя она уже давно не используется в своей простой форме. Согласно первоначальной формулировке Гелл-Мана, все адроны могут состоять из кварков трех типов и их антикварков, но физикам пришлось признать возможность существования дополнительных кварков, чтобы объяснить всё многообразие адронных паттернов. Три кварка Гелл-Мана получили произвольные обозначения: u (от англ. up — «верх»), d (от англ. down — «низ») и s (от англ. strange — «странный»). Первым дополнением к первоначальной концепции, возникшим в результате применения кварковой гипотезы ко всему массиву данных о мире частиц, было положение, согласно которому каждый кварк должен обладать тремя потенциальными состояниями, или «цветами». Слово «цвет» используется здесь условно и не имеет ничего общего с обычным понятием цвета. Согласно модели разноцветных кварков, барионы состоят из трех кварков разных цветов, а мезоны — из пары кварк-антикварк одного и того же цвета.
Введение понятия цвета увеличило количество кварков до девяти, а потом было заявлено о существовании еще одного, уже четвертого, кварка[229], который тоже может появляться в любом из трех цветов. Из-за любви физиков к лирическим названиям этот кварк был обозначен буквой «с» (от англ. charm — «очарование»). В результате кварков стало 12 — четыре разновидности, каждая в трех цветах. Чтобы разграничить понятия разновидности кварков и их цвета, физики ввели понятие «аромата» и говорят теперь о кварках разных цветов и ароматов.