Так потеряли способность к полету (а порой и сами крылья) многие птицы на островах без хищников, глаза — пещерные и подземные животные. Китообразные в начале третичного периода перешли в море, где органом движения у них стал мощный хвост. В таких условиях задние конечности не нужны, даже вредны, так как увеличивают сопротивление воды. Итогом явилась потеря задних конечностей, «ног». Передние остались, но приобрели функцию рулей. Тем не менее, в среднем каждый десятитысячный кашалот рождается с зачаточными задними ногами. А это может означать одно — в генотипе китообразных еще остались гены, ответственные за построение задних конечностей. Поэтому следует очень осторожно относиться к утверждению, что такая-то ветвь — тупиковая, она не сможет приспособиться к новой среде и ничего нового не даст. Чтобы установить наличие тупика, нужно уткнуться в стену — а стена где-то в отдаленном будущем.
Единственное, что можно утверждать: в настоящее время, в данных конкретных условиях
эти группы, или же (что вернее) такие-то органы у них регрессируют, а сами они находятся в стадии морфофизиологического регресса, что, впрочем, не исключает их биологического прогресса, процветания.До крайних пределов регресса доходят паразиты. Анализируя их эволюционные ряды, можно видеть, как они постепенно теряют органы чувств, хорошо развитую нервную систему, пищеварительную систему. В конце концов от них остается мешок, заполненный половыми продуктами. Таков, например, паразит крабов — ракообразное саккулина, паразитические моллюски, самцы некоторых видов, живущие в половых протоках самок. Венец регресса — встроенные в геном хозяина вирусы.
Может ли регресс идти дальше? Видимо, нет — организм уподобится чеширскому коту из детской английской сказки «Алиса в стране чудес», от которого оставалась одна улыбка.
Широкое распространение регрессивной эволюции в природе явно говорит против ламаркова «врожденного стремления к прогрессу». Если же мы учтем известное замечание Ф. Энгельса о том, что прогресс в органическом развитии в то же время и регресс, так как ограничивает возможности к развитию в других направлениях, нам станет ясно, что Ламарк ошибался. Виды прогрессируют, усложняя свою структуру и совершенствуя функции тех или иных организмов, только когда им выгодно (то есть пока в этом направлении действует естественный отбор).
В главе, посвященной прогрессу, нам, как ни странно, нужно рассмотреть еще вопрос о втором начале термодинамики и применимости его к живой природе. Сам по себе вопрос довольно сложен, к тому же вокруг него скопилось столько спорных и попросту неверных мнений, что автор приступает к нему с некоторым опасением, — удастся ли изложить его достаточно ясно и убедить всех без исключения читателей. Да еще надо постараться обойтись без формул!
Первое начало термодинамики знают все — это закон сохранения энергии, и смирились с ним почти все, кроме немногочисленных теперь изобретателей вечного двигателя. Да и те сейчас — компетенция скорее клиники, чем физики.
Иное дело — второе начало. Хотя на нем, вкупе с первым, построено все величественное здание современной физики, противников у него и сейчас столько, что становится ясным — оно затрагивает какие-то жизненные интересы людей, пресекает самые сокровенные их мечтания.
А какое самое сокровенное мечтание у человека? Может быть, бессмертие? Не постулирует ли второе начало неизбежность смерти?..
В самом общем виде второе начало можно выразить так: все процессы в природе протекают в сторону увеличения вероятности состояния, в сторону увеличения энтропии. Энтропия — омертвленная энергия, понизить запасы которой в системе можно лишь потратив еще большее количество энергии (ибо нет систем со 100 % коэффициентом полезного действия). Она может только увеличиваться, так же как и время может идти только вперед.
Чем менее равновесна система, тем менее вероятность ее пребывания в этом состоянии. Примеры неравновесных систем — стакан горячего чая на столе или палочка эскимо в летнюю жару. Не нужно быть пророком, чтобы предсказать, что рано или поздно стакан остынет, а эскимо растает. Они уравновесят свою температуру с окружающей средой, и энтропия возрастет. Чтобы ее понизить, нужно снова вскипятить чай и заморозить эскимо, но при этом мы всегда потратим больше энергии, чем потеряли. Как остроумно заметил известный биохимик, писатель-фантаст и популяризатор науки Айзек Азимов, первое начало гласит, что в игре с природой нельзя выиграть, а второе, — что нельзя даже остаться при своих.
А вот и другие примеры. Груда кирпичей — более вероятна, чем выстроенный из них с затратой энергии дом. Железная руда более вероятна, чем выплавленное из нее железо. И наконец, живой человек — явление, термодинамически менее вероятное, чем его скелет.