Самая распространенная конструкция топливного элемента сегодня – это два платиновых электрода, подключенных к электроцепи и разделенных между собой мембраной из особого полимера
Центральной деталью топливного элемента, таким образом, служат электроды из платины и полимер, который их отделяет друг от друга: вообразите, что первая топливная ячейка была изобретена еще в 1837 году химиком из Уэльса сэром Уильямом Робертом Грове, но ему не удалось распространить изобретение из-за его слишком низкой производительности. Чтобы заставить элемент работать эффективнее, нужно было решить две задачи: создать единый электрод, который бы расщеплял водород на два изолированных атома, а также найти способ быстро переправлять ионы H+ с одного электрода на другой. Задача с электродами была решена довольно быстро, учитывая, что сродство платины к водороду известна была давно – даже Грове использовал электроды именно из этого металла, – однако найти материал, который бы не препятствовал свободной циркуляции ионов водорода из одной части элемента в другой, оказалось куда как труднее. Только благодаря изобретению «Нафиона», созданного фирмой Дюпон в 1967 году, удалось создать подходящую мембрану, ознаменовавшую возрождение концепции топливного элемента.
Использование водорода, кажется, может решить значительную часть проблем, с которыми мы сейчас сталкиваемся: этот двигатель экологичен, топливо возобновляемо, не надо часами ждать перезарядки, и не только – даже в нынешнем состоянии водород дает плотность энергии (на единицу веса) примерно в 140 раз выше, чем самые современные аккумуляторы.
Поэтому многие исследователи начали работы в области
Начнем с задачи попроще: транспортировка. Представим себе, что водород у нас есть и поэтому нет никаких проблем с поставками. Но тут возникает вопрос: как мы могли бы его распределять так же, как мы делаем с углеводородами? У нас есть газопроводы, нефтепроводы, кабели высокого напряжения, но ничего подобного, подходящего для водорода. В то время как метан транспортируется под давлением, примерно равным атмосферному, водород требует для перемещения гораздо более высоких давлений, в двести-триста атмосферных. Однако сжатие газа до такого состояния требует значительных энергетических затрат, что существенно снижает КПД всей системы и несет дополнительные риски. По сравнению с метаном водород намного более опасный газ, поэтому его хранение требует тотальной перестройки всей системы распределения и складирования. Управление машиной на автостраде с баллоном водорода под давлением в 200 атмосфер под сиденьем как-то не внушает уверенности…
Можно обсудить также вариант хранения и транспортировки водорода в составе некой молекулы, чтобы потом выделять газ в нужный момент посредством химической реакции. Эта стратегия была исследована, в частности в военной сфере, но не привела к определенным результатам. Тепловые элементы весьма интересуют военных – они не создают шума, вибраций и почти не выделяют тепла, поэтому трудно поддаются обнаружению противником. Эти двигатели были опробованы на подводных лодках, например немецкой U212, но и в этом случае результаты не были слишком обнадеживающими из-за низкой энергетической плотности и невысокого уровня обратимости процесса. Другими словами, относительно простого перетаскивания баллонов со сжатым газом, возникла проблема транспортировки еще большего груза, и процесс «подзарядки» стал медленным и малоэффективным.