Рассмотрим теперь детальнее, когда совершаются решающие тепловые процессы, обеспечивающие успешную работу этого «клапана». Когда Солнце, в июне – июле, на околополюсном пространстве светит больше, чем на экваторе, и лёд начинает стаивать «клапан открывается». Конкретно это выражается во всплывании (поднятии) стаивающего льда на воде, а вследствие этого освобождения под ним объема для стекающего талого стока и в образовании промоин, по которым и стекает талый сток. Талая вода, усвоившая теплоту плавления, скоро и беспрепятственно возвращает водной массе океана всю теплоту, потерянную ею за долгую зиму в виде теплоты кристаллизации. Собственно клапаном, то есть в переводе с немецкого «крышкой» является сам лёд, поднимающийся на воде. На невскрывающемся водоёме им является многолетний ледяной покров. Завершение его летнего поднятия в этом случае знаменует и «закрытие клапана» до следующей весны. Именно только за короткий летний период года Северный Ледовитый океан накапливает теплоту, получая её преимущественно от Солнца. Всю остальную, большую часть года, океан практически обходится этим же теплом (рис. 6).
На вскрывающемся летом водоеме обратный клапан «закрывается» сразу с появлением на водоёме нового льда. Зимой остывшая атмосфера жаждет забрать тепло океана, но закрывшийся клапан не отпускает его. В результате тепло все же выделяется в обход клапана, но не иначе, чем в виде теплоты кристаллизации, отходящей от нижней плоскости льда; не иначе, чем через сам постоянно утолщающийся лёд и не иначе, чем очень замедленной и постоянно замедляющейся кондуктивной теплопроводностью. Такое многофакторное регламентирование теплопередачи и приводит к тому, что приобретенное летом тепло водная масса океана возвращает зимой атмосфере в сотни раз менее интенсивно, чем усваивала его, когда обратный тепловой клапан «открывался».
Тут пора ещё раз обратить внимание на колоссальные различия внешних термических условий, при которых происходит расходование и усвоение одних и тех же количеств теплоты кристаллизации и теплоты плавления, напомним, что эти различия обусловливаются соотношением сумм градусо-суток положительной и отрицательной температуры за лето и зиму. Посмотрим какими они бывают над акваторией Северного Ледовитого океана.
Сумма градусо-суток отрицательной температуры довольно уверенно определяется по многим данным станции «Северный полюс» (СП) и в среднем составляет ∑-t° = минус 7 000°. Сумма положительных температур по прямым измерениям температуры около 0 °C сколько-нибудь надежно не определяется. Но она может быть определена, как величина, эквивалентная количеству тепла, усваиваемого льдом при стаивании. Измеренное стаивание льда, а значит, и сумма градусо-суток положительной температуры имеет значительный разброс, что и принуждает нас выведенные соотношения сумм градусо-суток, а заодно и условия, их определяющие, сгруппировать (табл. 1).
Крайняя правая колонка табл. 1 достаточно убедительно показывает, что сумма градусо-суток отрицательной температуры воздуха над Северным Ледовитым океаном превосходит сумму положительных температур в сотни, а в среднем примерно в 200 раз за год. Между тем средняя температура всей толщи (около 4 000 м) воды Мирового океана вдоль экватора и Северного Ледовитого океана у полюсов на фоне огромного различия в теплообеспеченности приземных слоев воздуха над той и другой акваториями можно считать почти не различающимися.
Но если бы наш, отнюдь не мифический, обратный тепловой клапан не «работал», как он не «работает» на вечную мерзлоту, поскольку его на ней не возникает и неравновесного теплообмена Северного Ледовитого океана с внешней средой не существует, то он оледеневал бы, как и вечная мерзлота, на большую глубину до тех пор, пока не встретил бы равный противонаправленный поток внутриземного тепла.