Де Бройль был поражен аналогией между основными законами оптики и законами динамики частицы, выраженными в виде принципов наименьшего времени и наименьшего действия соответственно. Он видел, что проблема кажущегося наличия у частицы предварительного знания о том, какой путь будет соответствовать наименьшему действию, могла быть решена в точности тем же способом, что и для света,
при условии, что с частицей можно ассоциировать волну. Тогда анархия приводила бы к закону: волны, ассоциированные с частицей, исследовали бы все пути между источником и местом назначения, и только те из них, которые соответствуют прямой линии (если нет никаких действующих сил, или, в более общем случае, если присутствующие силы действуют аналогично зеркалам и линзам) подверглись бы конструктивной интерференции и выжили бы в процессе взаимного уничтожения со своими соседями. Эта аннигиляция становилась бы все более точной с уменьшением длины волны этих «волн вещества», и в пределе бесконечно малой длины волны мы вновь получили бы вполне определенный путь в пространстве. Иными словами, появилась бы ньютоновская динамика с частицами, следующими по точным траекториям.Исследуя эту аналогию, де Бройль смог вывести выражение для длины волны своих волн вещества:
Длина волны = h / импульс
,где
h— постоянная Планка, а импульс частицы является произведением его массы и скорости (как мы видели в главе 3). Таким образом, постоянная Планка (напомним, что Планк называл свою постоянную «квантом действия») входит в описание динамики вещества на очень глубоком уровне, касаясь самого сердца движения. Отметим, что из-за ее вхождения в импульс в знаменателе этого выражения появляется масса, поэтому можно ожидать, что большие массы (мячи, люди, планеты) имеют крайне малые длины волн. Ваша длина волны, когда вы бодро проходите 1 метр в секунду, составляет приблизительно лишь 1x10
-35м, поэтому ваше движение можно интерпретировать в соответствии с динамикой Ньютона, и вы можете путешествовать, не слишком опасаясь подвергнуться дифракции и оказаться в Падуе вместо Пизы. Вряд ли надо удивляться, что волны столь малой длины прошли незамеченными и что ньютоновская динамика оказалась столь успешной в применении к видимым, «макроскопическим» телам. Однако, когда рассмотрению подвергаются электроны, мы входим в другой мир, поскольку они настолько легки, что их импульсы малы, а длины волн соответственно велики. Длина волны электрона в атоме сравнима с диаметром самого атома, и для них ньютоновская динамика больше не может служить приемлемым приближением.Де Бройль поистине заслужил свою Нобелевскую премию, которая и была ему вручена в 1929 г. за «открытие волновой природы электрона». Нобелевский комитет, однако, был не вполне прав в своей формулировке: волновая природа частиц, обнаруженная де Бройлем, присуща всем частицам, а не только электронам. Электроны являются легчайшими из общеизвестных частиц, поэтому его предположение для них наиболее очевидно; но не существует частицы или скопления частиц (включая мячи, людей и планеты), в принципе не обладающих связанным с ними волновым характером. Существование этого волнового характера было подтверждено экспериментальной демонстрацией того, что электроны проявляют наиболее характерную черту волн, дифракцию. В 1927 г. американец Клинтон Дэвиссон (1881-1958) заслужил свою порцию Нобелевской премии 1937 г., показав, что электроны дифрагируют на одиночном кристалле никеля, а Джордж Томсон (1892-1975), работая в Абердине, заслужил свою долю премии, показав, что они дифрагируют, проходя через тонкую пленку. С тех пор подвергались дифракции целые молекулы. Привлекательным аспектом семейной науки является то, что Дж.П. Томсон получил свою премию за демонстрацию того, что электрон является волной, в то время как его отец, Дж.Дж. Томсон, получил свою за демонстрацию того, что электрон является частицей. Завтрак у Томсонов, возможно, бывал подернут ледком.
Мы находимся в том моменте, когда революция уже висела в воздухе, хотя не была еще полностью сформированной и не осознавалась. Даже де Бройль на самом деле не знал, что он имел в виду под своими «волнами вещества». Что, однако, было установлено, так это
дуальностьвещества и излучения, то, что они обладают характеристиками как волн, так и частиц. Было показано, что свет, который долго считали подобным волне, имеет и другое лицо и ведет себя как частицы. Было показано, что вещество, которое долго считали состоящим из частиц, имеет второе лицо и ведет себя как волна. И снова на ум приходит образ куба (рис.
6.12), у которого один ракурс выглядит для нас как квадрат, а другой как шестиугольник.