Классическая физика, которая совсем ничего не знала об импульсе фотона, поскольку ничего не знала о самих фотонах и пребывала в неведении о постоянной Планка, основывалась на точке зрения, что положение и импульс можно одновременно узнать с произвольной точностью. Теперь возникает вопрос: как принцип неопределенности — который нам следует считать фундаментальным описанием природы и глубоким отходом от классической физики — может быть включен в математическое описание движения? В классической физике мы представляли себе, что положение и импульс частицы меняются со временем и развертываются во времени как вполне определенная
траекториячастицы.Мы можем подойти к ответу следующим образом. Очевидно, что для любого заданного момента мы можем написать:
положение x импульс - импульс x положение = 0
.Например, если положение измеряется расстоянием в две единицы от некоторой точки, а импульс измеряется тремя единицами, то первый член в левой части дает 2
x3 = 6 единиц, а второй член дает 3
x2 = 6 единиц, и их разность, очевидно, равна нулю. Однако, каким бы очевидным ни было это сокращение членов, в квантовой механике оно совершенно определенно не верно. Проще говоря, поскольку мы не знаем одновременно положение и импульс, мы не можем быть уверены, что каждый член в точности равен 6 единицам (или тому, что дают наши измерения), поэтому возможно, что первый член в этом выражении отличается от второго на какую-то величину, имеющую порядок постоянной Планка. Великим достижением Гейзенберга была демонстрация того, что экспериментально подтвержденное утверждение о мире, соотношение неопределенностей для положения и импульса, может быть получено только, если правая часть выражения не равна нулю, а представляет собой, на самом деле, постоянную Планка,
h:
[31]положение x импульс - импульс x положение = h
.Классические физики молчаливо предполагали, что правая часть этого
коммутационного соотношенияравна нулю, и на этом основании построили чудесное здание классической физики. Теперь мы знаем, что правая часть не равна нулю, но столь мала, что заблуждение классических физиков не удивительно. Тот факт, что правая часть не равна нулю, имеет глубокие следствия и является той малостью, которая сокрушила классическую физику.Гейзенберг, при сотрудничестве своих коллег, — Макса Борна (1882-1970) и Паскуаля Иордана (1902-80), нашел как включить в квантовую механику ненулевую правую часть выражения для положения и импульса. Шредингер тем временем нашел другой путь. Вспомните, что де Бройль предположил, что существуют волны вещества как-то «ассоциированные» с частицами и что, принимая во внимание интерференцию, выживающая волна распространяется по пути наименьшего действия. Довольно легко найти правила, по которым волна ощупью пробирается через пространство, чтобы найти путь выживания. Эти правила и являются содержанием
уравнения Шредингера.
[32]Прославленное уравнение показывает, как волна вещества меняется от точки к точке, и оказывается, что, для того чтобы сформулировать его, необходимо использовать в точности то же самое выражение для положения и импульса, которое Гейзенберг должен был использовать, чтобы пробить брешь в классической физике. Центральная роль этого соотношения в обеих формулировках является основной причиной, по которой подходы Гейзенберга и Шредингера математически эквивалентны.Когда мы решаем уравнение Шредингера, мы получаем математические выражения для формы волн вещества. Термин «волна вещества» больше не используется, как и его интерпретация, принадлежащая де Бройлю. Современным названием для «волны вещества» является
волновая функция(термин, с которым мы впервые столкнулись в главе 5), и далее мы будем пользоваться им.