Рис. 7.5.
Типичная волновая функция (слева). Это волновая функция маятника, который качается с малой начальной энергией. Квадрат волновой функции (показанный справа) говорит о вероятности того, что качающийся маятник будет обнаружен в данном положении. Мы иллюстрируем эту интерпретацию с помощью плотности тени в наложенной горизонтальной полосе.Теперь давайте посмотрим, на что похожи другие волновые функции. Волновая функция свободной частицы очень проста. Предположим, что частица, о которой мы говорим, является шариком-бусинкой, способным скользить по длинной горизонтальной проволоке. Потенциальная энергия шарика является одной и той же, безотносительно к его позиции, поэтому мы можем подозревать, что волновая функция не будет благоволить каким-либо особым областям. Медленная частица имеет низкую кинетическую энергию, поэтому ее волновая функция имеет лишь небольшую кривизну (рис. 7.6); другими словами, волновая функция медленно двигающейся частицы является однородной волной с большой длиной волны, в точности, как говорит нам соотношение де Бройля. Быстрая частица — с большой кинетической энергией — имеет волновую функцию с большой кривизной, так что она извивается вверх и вниз много раз на коротком интервале, и поэтому является однородной волной с очень короткой длиной волны. Обе эти волны просто являются тем, что предсказывает соотношение де Бройля.
Рис. 7.6.
Диаграмма слева показывает две волновых функции для шарика-бусинки, движущегося по длинной горизонтальной проволоке с остановками на каждом ее конце. Одна функция соответствует маленькому импульсу, а другая большому. Диаграмма справа показывает для каждой точки проволоки вероятность обнаружения шарика, движущегося быстрее.Где скорее всего мы найдем частицу? Давайте представим себе шарик, носящийся взад и вперед по длинной проволоке, поворачивая обратно на каждом ее конце, и рассмотрим его движение как случайное. Из-за того, что шарик движется с постоянной скоростью, в соответствии с классической физикой шансы найти его в любой точке проволоки равны. Квантовая механика дает иное предсказание. Чтобы предсказать, где будет обнаружен шарик, мы воспользуемся предложением Борна: вычислим квадрат волновой функции в каждой позиции и интерпретируем результат как вероятность обнаружить частицу в этой позиции. Как можно видеть из иллюстрации, частица с наибольшей вероятностью будет обнаруживаться в серии одинаковых областей, регулярно расположенных на проволоке, а не будет распределена совершенно однородно.
Теперь давайте посмотрим, как волновая функция свободной частицы соответствует принципу неопределенности, согласно которому, если мы знаем импульс, мы не можем знать положения, и наоборот. Волновая функция, подобная изображенной на рис. 7.6, распространяется по всей длине проволоки, поэтому мы не можем предсказать, где находится частица: она может быть в любом месте проволоки. С другой стороны, импульс мы знаем точно, поскольку знаем точно длину волны. Итак, мы знаем точный импульс, но ничего не можем сказать о положении, именно так, как этого требует принцип неопределенности. На самом деле длина волны дает нам только
Пусть теперь случилось так, что мы знаем, в какой области проволоки на самом деле находится частица. Ее волновая функция выглядела бы похожей на изображенную на рис. 7.7 с резким пиком там, где частица скорее всего находится. Если мы хотим узнать импульс частицы, нам следовало бы определить длину волны этой волновой функции. Но функция с резким пиком не имеет определенной длины волны, поскольку она не является протяженной волной, так же как импульс звука — хлопок — не имеет определенной длины волны. Что же это говорит нам об импульсе частицы?