У интуиционизма есть определенные неприятные следствия, которые не становятся немедленно очевидными при кратком описании, но которые необходимо отметить, поскольку они наносят удар в самое сердце классической логики. Это, в частности, случай, когда имеют дело с утверждениями о бесконечных наборах объектов, с которыми нельзя ассоциировать никакую умственную активность, связанную с их восприятием, поскольку у нас нет прямого опыта бесконечности. Например, Аристотель считал одним из столпов логики свой
Давид Гильберт (1862-1943), прекрасный танцор и любитель пофлиртовать, был одним из наиболее влиятельных математиков двадцатого столетия. Он, как и Кант, родился в Кенигсберге, в Восточной Пруссии (по странному совпадению, Гольдбах тоже родился там). Он знаменит, в частности, тем, что сформулировал проблемы математики, которые, по его ощущениям, на грани веков, то есть в начале двадцатого века, являлись самыми выдающимися. С тех пор многие математики пытались разрешить представленные Гильбертом проблемы, сообщение о которых он сделал на Втором Международном конгрессе математиков в Париже в 1900 г. В лекции были представлены десять проблем; пока Гильберт работал над версией для публикации, их число выросло до двадцати трех. Влияние этих проблем — которые правильнее считать комплексом из группы проблем и намеков на проблемы, чем двадцатью тремя точно сформулированными отдельными экзаменационными вопросами — проистекает из того, что они представляли собой ответ на вопрос о том, что считать хорошей проблемой. Так, проблемы, предъявленные Гильбертом, стоили того, чтобы потратить время на их решение: они были трудными, но не выглядели нерешаемыми, а решение их осветило бы более широкий круг вопросов, чем те, которые они содержали.
Некоторые из этих проблем решены; некоторые оказались неразрешимыми; иные все еще подвергаются атакам исследователей. Некоторые из проблем, в том виде, в котором Гильберт их сформулировал, являются настолько грандиозными, что неясно, будет ли когда-нибудь получено их решение, столь же определенное, как для других проблем. Например, одной из грандиозных проблем была аксиоматизация физики, утверждение ее на кратком и надежном основании, как это проделал Евклид для своего варианта геометрии, а он, Гильберт, строго формализовал его в своем авторитетном труде