Читаем Десять великих идей науки. Как устроен наш мир. полностью

Знак сложения, «+», возможно, произведен от курсивного написания et и впервые появился в немецком манускрипте пятнадцатого века, а знак «−» для вычитания мог просто указывать на отделение. Знак умножения, «×», возможно, произошел от символа, использовавшегося для вычисления пропорций, которое включает перекрестные перемножения, и впервые появился в труде Clavis mathematicae, опубликованном в 1631 г. Уильямом Отредом (1574-1660), изобретателем раннего варианта логарифмической линейки. Немецкий математик Готфрид Лейбниц (1646-1716) счел, что знак × слишком легко спутать с x, и в 1698 г. предложил использовать вместо него простую точку, так чтобы a.b обозначало умножение a на b. Он также предпочел для деления знак «:», но  сначала в шведском тексте 1659 г. для деления был использован символ «÷», ранее обозначавший вычитание.

Знак равенства, «=», образованный двумя горизонтальными линиями, был введен в The whetstone of witte (Оселок для ума) (1557) английским математиком Робертом Рэкодом (около 1510-58), который познакомил Англию с алгеброй, придумал популярные названия для учебников (включая The whetstone (Оселок), The grounde of artes (Основа искусств), для введения в арифметику, и The castle of knowledge (Твердыня знания) для учебника астрономии), но тем не менее умер в долговой тюрьме. Рэкод писал:

И чтобы избежать утомительных повторений этих слов «является равным», я буду рисовать, как часто уже делал это для облегчения работы, две параллельные линии одинаковой длины, так как нет двух вещей, которые были бы равны в большей мере.

Знакомый теперь знак Рэкода «=» вел долгие войны с «||» и различными обозначениями, основанными на ae, сокращении от aequalis, прежде чем наконец одержать триумфальную победу.

Сложение и умножение натуральных чисел порождают просто другие натуральные числа. Например, 2 + 5 = 7 есть натуральное число, а 2 × 5 = 10 еще одно натуральное число. Однако вычитание порождает новый класс чисел. Так, если мы вычтем 3 из 2, мы получим −1, что расширяет поле нашего дискурса от натуральных чисел до целых: …, −2, −1, 0, 1, 2, …. Отрицательные числа в момент их появления должны были очень озадачивать, поскольку людям, привыкшим лишь к пересчитыванию, было трудно понять, что такое «меньше, чем ничего».[48]

Хотя умножение натуральных чисел дает только натуральные числа, понятие умножения приводит к определению подкласса натуральных чисел, называемых простыми числами, то есть чисел, не являющихся произведением других натуральных чисел (кроме единицы и себя самого). Так, несколькими первыми простыми числами натурального ряда являются 2, 3, 5, 7, 11, 13, 17, …. Такое число, как 15, не является простым, так как может быть записано в виде 3 × 5; с другой стороны, 17 является простым числом, потому что его нельзя записать в виде произведения других натуральных чисел. Простые числа находились и продолжают находиться в центре повышенного внимания тех, кто заворожен числами, поскольку они, видимо, ведут себя во многом подобно фундаментальным «атомам» натуральных чисел: с точки зрения операции умножения они являются числами, из которых можно построить все остальные числа. Этот фундаментальный характер является сутью содержания фундаментальной теоремы арифметики Евклида, которая утверждает, что каждое представление натурального числа произведением простых чисел является единственным. Например, такое число, как 9 365 811, может быть выражено в виде произведения простых чисел только одним способом (в данном случае, как 3 × 72 × 133 × 29). Эта фундаментальная теорема является основой современных процедур кодирования, в которых используются произведения двух больших простых чисел, так что изучение простых чисел не является просто делом бесстрастной математики, а играет центральную роль в обеспечении безопасности коммерческих операций и приватности связей между отдельными людьми и армиями.

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия