Читаем Десять великих идей науки. Как устроен наш мир. полностью

Поскольку ускорение является скоростью, с которой меняется скорость, мы можем, по-видимому, оценить по достоинству то, что внутри второго закона Ньютона зарыта возможность предсказания пути частицы, подвергающейся действию силы, которая может меняться от места к месту и принимать разные значения в разные моменты времени. «Зарыта» — термин, подходящий к этому случаю, поскольку расчет путей может оказаться весьма мудреным упражнением, более похожим на эксгумацию, чем на алгебру. Тем не менее это можно проделать для ряда простых случаев; но даже для сложных полей сил, таких, которые возникают возле двойной звезды, за эту задачу можно браться, используя компьютеры (рис. 3.2). Говоря короче, мы можем интерпретировать второй закон как утверждение, что, если мы знаем, где находится частица, или даже группа частиц, в данное время, мы можем в принципе предсказать, где ее найти и куда она будет двигаться в любое более позднее время. Предсказания таких точных траекторий представляют собой одно из достижений, прославивших классическую механику.

Рис. 3.2. Орбиты космических кораблей, рассчитанные с помощью механики Ньютона. Вычисления являются сложными, поскольку космические корабли подвергаются влиянию планет. Верхняя диаграмма показывает пути Вояджера 1 и Вояджера 2, начавших свои полеты в 1977 г. и функционирующих до сих пор. Вояджер 1, самый удаленный объект во Вселенной, сделанный человеком, покидает Солнечную систему со скоростью 3,6 а.е. в год (1 а.е., одна астрономическая единица представляет собой средний радиус орбиты вращения Земли вокруг Солнца и соответствует примерно 150 миллионам километров), под углом 35 градусов к плоскости планетарных орбит. Вояджер 2 также уходит из Солнечной системы со скоростью около 3,3 а.е. в год, под углом 48 градусов к этой плоскости, но в противоположном направлении. Нижний график показывает приращения скорости космических кораблей, когда они облетали каждую из планет. Эти поддержанные гравитацией приращения гарантируют, что скорость кораблей достаточна, чтобы они могли достичь своих целей, а затем покинуть Солнечную систему.

Третий закон Ньютона более глубок, чем выглядит. На первый взгляд кажется, что из него следует лишь то, что если бита прилагает силу к мячу, то мяч прилагает равную и противоположную силу к бите. Мы, разумеется, можем чувствовать силу, приложенную к мячу, когда мы ударяем по нему битой или пинаем его ногой. Однако подлинная значимость третьего закона состоит в том, что из него следует закон «сохранения». А сохранение это как раз та тема, которой посвящена вся эта глава, так что теперь мы начинаем подбираться к намеченной жертве. Однако сначала нам следует немного распаковать использованные здесь понятия.

Закон сохранения является утверждением, сообщающим о том, что ничто не меняется. Это может показаться самым неинтересным из возможных видов комментирования в науке. В действительности это, как правило, наиболее глубокий и наиболее содержательный тип научных законов, поскольку он дает интуитивное проникновение в симметрию — по существу, в форму — систем и даже в симметрии пространства и времени. Частным законом сохранения, следующим из третьего закона Ньютона, является закон сохранения импульса. В классической механике импульсом тела называется просто произведение его массы на его скорость:

Импульс = масса × скорость.

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия