Читаем Диалоги (июнь 2003 г.) полностью

Сначала хочу объяснить то удивление, которое, в частности, я испытал (используя некоторый образ, который может быть не совсем корректен в таких научных беседах, но по-другому я не сумею, видимо, объяснить то удивление, а может быть восхищение, которое лично я испытал). Представьте, что какая-то фирма вынуждена создать себе охрану. И вдруг оказывается, что созданная охрана является весьма мощным производителем, то есть даёт удивительный эффект для основной производственной деятельности.

Ну а теперь вернёмся к математике. Так вот, я уже объяснил, что математическая логика была создана как некоторое охранное предприятие. Охрана от противоречий. Как для нынешних фирм система охраны необходима, так и математика нуждалась в определённом охранении. Но казалось бы, ну что тут такого? Но вот оказалось, что языки, в частности один из языков математической логики, так называемое «исчисление предикатов первой ступени», обладает некоторым мощным внутренним математическим свойством. Анатолий Иванович Мальцев в 36 году доказал так называемую Теорему компактности. Не буду говорить, что это такое, но это, так сказать, мощное внутреннее свойство формального языка. А в 41 году Анатолий Иванович продемонстрировал, что только с помощью этого свойства языка можно доказать очень многие теоремы, которые уже в специализированных отделах математики доказывались – так называемые локальные теоремы, причём, разные теоремы разными способами. Они чем-то были похожи, но кроме ощущения того, что они похожи, ничего другого не было.

Оказалось, что большинство из этих локальных теорем – это есть следствие этой локальной теоремы. Что достаточно сформулировать на этом формальном языке соответствующее утверждение с некоторыми ограничениями, и тогда уже как следствие получается эта локальная теорема. Вот здесь я хотел бы сослаться на книгу Пойя – это известный американский учёный, но на самом деле он из Венгрии происходит. Пойя написал книгу, которая у нас была переведена, «Как решать задачу?», она была издана в «Учпедгизе». И там, собственно, рассказывается некоторая эвристика и даются некоторые советы, как решать задачу, как анализировать и так далее. И там, в частности, описываются разные явления, которые при этом возникают. И одно из явлений называется «парадокс изобретателя». Там особенно про изобретателя не идёт речи, но суть состоит в следующем: иногда, решая задачу, полезно взглянуть на неё, может быть, сверху и рассмотреть более общую задачу. И при таком взгляде она становится проще. Я считаю, что открытие локальной теоремы и открытие способа её применения для доказательства серьёзных теорем, которые уже были известны и очень многих новых теорем, это был парадокс изобретателя.

Оказалось, что суть большинства этих локальных теорем – это свойство того формального языка, который используется. Ну, дальше – больше. Теорема компактности привела к созданию одного из наиболее развитых разделов математической логики – так называемой «теории моделей». И здесь прослеживается, на мой взгляд, довольно любопытная эволюция, которую я попытаюсь как-то объяснить. Я для себя использую деление «современная математика» и «классическая математика», достаточно понятное различие. Можно про любую науку сказать – современная и классическая. Но на самом деле, что такое классическая математика и что такое современная? Классическая математика занималась очень ограниченным числом объектов – линия, плоскость, фигуры на плоскости, трехмерное пространство, далее непрерывные функции в трехмерном пространстве. Этим классическая математика занималась многие века.

Современная математика началась, я думаю, с открытия Эвариста Галуа, который для решения классических вопросов о нахождении корней уравнения в радикалах, о которых я уже здесь говорил, предложил ввести некоторые новые вещи. Не те классические объекты, а автоморфизм и конечные группы и так далее. Для решения классических вопросов нужно было ввести новые сущности. И вот с этого, на мой взгляд, начинается современная математика. Но и сейчас изучение классических объектов можно отнести к работам по классической математике. Но необходимо и изучение тех новых конструкций, которые нужны и для внутреннего развития математики, и для решения старых вопросов. Вот знаменитая теорема Ферма, которую несколько столетий пытались решать математики, она была, наконец, решена несколько лет тому назад. Но для её решения, а она была сформулирована в 17-м веке, понадобились совершенно современные методы. И это потребовало нескольких столетий развития математики. Так что существуют классические вопросы и классическая математика и есть современная математика, когда изучаются уже объекты более общей природы.

Перейти на страницу:

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Япония Нестандартный путеводитель
Япония Нестандартный путеводитель

УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо) Г61Головина К., Кожурина Е.Г61 Япония: нестандартный путеводитель. — СПб.: КАРО, 2006.-232 с.ISBN 5-89815-723-9Настоящая книга представляет собой нестандартный путеводитель по реалиям современной жизни Японии: от поиска жилья и транспорта до японских суеверий и кинематографа. Путеводитель адресован широкому кругу читателей, интересующихся японской культурой. Книга поможет каждому, кто планирует поехать в Японию, будь то путешественник, студент или бизнесмен. Путеводитель оформлен выполненными в японском стиле комиксов манга иллюстрациями, которые нарисовала Каваками Хитоми; дополнен приложением, содержащим полезные телефоны, ссылки и адреса.УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо)Головина Ксения, Кожурина Елена ЯПОНИЯ: НЕСТАНДАРТНЫЙ ПУТЕВОДИТЕЛЬАвтор идеи К.В. Головина Главный редактор: доцент, канд. филолог, наук В.В. РыбинТехнический редактор И.В. ПавловРедакторы К.В. Головина, Е.В. Кожурина, И.В. ПавловКонсультант: канд. филолог, наук Аракава ЁсикоИллюстратор Каваками ХитомиДизайн обложки К.В. Головина, О.В. МироноваВёрстка В.Ф. ЛурьеИздательство «КАРО», 195279, Санкт-Петербург, шоссе Революции, д. 88.Подписано в печать 09.02.2006. Бумага офсетная. Печать офсетная. Усл. печ. л. 10. Тираж 1 500 экз. Заказ №91.© Головина К., Кожурина Е., 2006 © Рыбин В., послесловие, 2006 ISBN 5-89815-723-9 © Каваками Хитоми, иллюстрации, 2006

Елена Владимировна Кожурина , Ксения Валентиновна Головина , Ксения Головина

География, путевые заметки / Публицистика / Культурология / Руководства / Справочники / Прочая научная литература / Документальное / Словари и Энциклопедии
Введение в логику и научный метод
Введение в логику и научный метод

На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках. Как синтетический курс логики и научной методологии не имеет аналога среди отечественных учебников.Значительная часть книги посвящена исследованию проблем прикладной логики: экспериментальным исследованиям, индукции, статистическим методам, анализу оценочных суждений.В книге дается анализ предмета логики и природы научного метода, рассмотрение той роли, которую методы логики играют в научном познании, а также критика многих альтернативных подходов к истолкованию логики и науки в целом. В этом отношении она представляет собой самостоятельное философское произведение и будет интересна специалистам в области философии и методологии науки.Для преподавателей логики, философии науки, теории аргументации и концепций современного естествознания, студентов, изучающих логику и методологию науки.

Моррис Коэн , Эрнест Нагель

Философия / Прочая научная литература / Образование и наука