Читаем Диалоги (июнь 2003 г.) полностью

И теорема Гёделя, во всяком случае, её доказательство, используя определённые находки, довольно любопытные технические находки, в некотором смысле моделирует этот парадокс. У Гильберта, которого я уже упоминал, была уверенность, что можно создать такую систему аксиом для всей математики, из которой будут следовать все математические утверждения. Это такая вера была. И он предложил программу формализации математики. А Гёдель, собственно, его опроверг. Он показал, что если аксиоматическая система достаточно богата, то в ней обязательно можно сформулировать утверждение, которое не может быть доказано, но которое будет верным. А в основе этого лежит следующее, что и для этого требуется не весь язык математики, а язык, который говорит просто о натуральных числах, 0, 1, 2, 3, о сложении и умножении. Язык достаточно ограниченный. Но если использовать такой способ, который называется нумерация, то есть если занумеровать все формальные выражения с помощью чисел (а эти утверждения формального языка сами говорят о числах), то можно говорить о самих себя. Проблема самоприменимости кодируется, используя нумерации. То есть сам подход математически был весьма оригинальным, а дальше уже само рассуждение и приведение к противоречию получается достаточно просто.

А.Г. Если позволите, два вопроса, поскольку у нас не так много времени осталось. Первый касается как раз теоремы Ферма. Все ли доказательства равноценны? Потому что ведь Ферма наверняка имел в виду некое другое доказательство собственной теоремы, а не то, которое получил американец, если не ошибаюсь…

Ю.Е. Эндрю Уайлс.

А.Г. …Эндрю Уайлс 300 лет спустя. И таким образом, можно ли считать теорему Ферма доказанной? Это первый вопрос.

Ю.Е. Безусловно, так, как эта теорема сформулирована, в таком виде Уайлс её и доказал. Использовал ли он те средства, которые были доступны Ферма? Ответ – безусловно, нет. Я уже об этом говорил, в доказательстве Уайлса используются очень современные средства, причём, которые создавались в течение многих лет. Так что это, безусловно, не то, на что надеялся или о чём заявил Ферма. Известно, что он заявил, что «поля книги слишком малы для того, чтобы я смог воспроизвести то удивительное доказательство, которое я нашёл». Но, тем не менее, многовековая экспертная оценка утверждает, что, по-видимому, Ферма всё-таки не имел доказательства.

А.Г. И второй вопрос. То, что является священной коровой для одних наук, естественных, скажем, для физики, и что формулируется как принцип Оккама или бритва Оккама – отсекай ненужные сущности – в математике напрочь опровергается, судя по вашим словам. То есть математика создаёт сущности на каждом шагу и оказывается, что они необходимы для существования самой математики.

Ю.Е. Не совсем так. Дело в том, что идёт отбор этих сущностей. Они создаются, они пробуются. Те сущности, которые себя оправдывают, они остаются. А те, которые, как говорится, не подтвердили свою полезность, свою нужность, они просто отпадают. И в этом отношении, кстати, на математику можно смотреть и как на экспериментальную науку. Математики создают орудия, пробуют их, выбрасывают ненужные и оставляют нужные. Но то, что, как говорится, умножать сущности иногда нужно. Это сделали, например, уже упомянутые здесь Галуа и Абель, которые решили известную проблему о том, что корень общего уравнения пятой степени неразрешим в радикалах, то есть нельзя написать формулу теми ограниченными средствами, которые есть. Так вот, для ответа на этот вопрос необходимо было выйти за пределы сущности классической математики. Для этого нужно было ввести новые понятия. Без этих новых понятий ответа бы не было. Так что создание новых сущностей является обязательным. Но тем не менее, во-первых, есть естественный отбор, а, во-вторых, иногда математики позволяют себе декларировать, по крайней мере, абсолютную свободу. В принципе я могу написать некоторую систему аксиом и буду её исследовать и, как говорится, никто мне не запретит. Это правильно, никто не запретит. Но в реальной жизни, конечно, так не происходит. Потому что, во-первых, математическое сообщество может посмотреть на твои упражнения, но если ты ни одного человека…

Суперпарамагнетизм

17.06.03

(хр.00:51:14)


Участники:

Анатолий Константинович Звездин – доктор физико-математических наук

Константин Анатольевич Звездин – научный сотрудник


Перейти на страницу:

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Япония Нестандартный путеводитель
Япония Нестандартный путеводитель

УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо) Г61Головина К., Кожурина Е.Г61 Япония: нестандартный путеводитель. — СПб.: КАРО, 2006.-232 с.ISBN 5-89815-723-9Настоящая книга представляет собой нестандартный путеводитель по реалиям современной жизни Японии: от поиска жилья и транспорта до японских суеверий и кинематографа. Путеводитель адресован широкому кругу читателей, интересующихся японской культурой. Книга поможет каждому, кто планирует поехать в Японию, будь то путешественник, студент или бизнесмен. Путеводитель оформлен выполненными в японском стиле комиксов манга иллюстрациями, которые нарисовала Каваками Хитоми; дополнен приложением, содержащим полезные телефоны, ссылки и адреса.УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо)Головина Ксения, Кожурина Елена ЯПОНИЯ: НЕСТАНДАРТНЫЙ ПУТЕВОДИТЕЛЬАвтор идеи К.В. Головина Главный редактор: доцент, канд. филолог, наук В.В. РыбинТехнический редактор И.В. ПавловРедакторы К.В. Головина, Е.В. Кожурина, И.В. ПавловКонсультант: канд. филолог, наук Аракава ЁсикоИллюстратор Каваками ХитомиДизайн обложки К.В. Головина, О.В. МироноваВёрстка В.Ф. ЛурьеИздательство «КАРО», 195279, Санкт-Петербург, шоссе Революции, д. 88.Подписано в печать 09.02.2006. Бумага офсетная. Печать офсетная. Усл. печ. л. 10. Тираж 1 500 экз. Заказ №91.© Головина К., Кожурина Е., 2006 © Рыбин В., послесловие, 2006 ISBN 5-89815-723-9 © Каваками Хитоми, иллюстрации, 2006

Елена Владимировна Кожурина , Ксения Валентиновна Головина , Ксения Головина

География, путевые заметки / Публицистика / Культурология / Руководства / Справочники / Прочая научная литература / Документальное / Словари и Энциклопедии
Введение в логику и научный метод
Введение в логику и научный метод

На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках. Как синтетический курс логики и научной методологии не имеет аналога среди отечественных учебников.Значительная часть книги посвящена исследованию проблем прикладной логики: экспериментальным исследованиям, индукции, статистическим методам, анализу оценочных суждений.В книге дается анализ предмета логики и природы научного метода, рассмотрение той роли, которую методы логики играют в научном познании, а также критика многих альтернативных подходов к истолкованию логики и науки в целом. В этом отношении она представляет собой самостоятельное философское произведение и будет интересна специалистам в области философии и методологии науки.Для преподавателей логики, философии науки, теории аргументации и концепций современного естествознания, студентов, изучающих логику и методологию науки.

Моррис Коэн , Эрнест Нагель

Философия / Прочая научная литература / Образование и наука