Появился лаг, позволяющий определять скорость корабля, и техника счисления пути. На суше эта проблема стояла менее остро, тем более что характерные скорости человека и лошади, так или иначе, были известны.
В итоге возник довольно примитивный пакет, включающий известные способы ориентации и очень примитивные абрисы местности или береговых линий. Это пакет позволял худо-бедно ориентироваться в пространстве, но не давал возможности точно определить свое местоположение и проложить путь.
По мере роста размеров и скорости кораблей начала все более явно ощущаться потребность в
Создание проекционной геометрии вкупе со знаниями, накопленными примитивными картами, позволила превратить субпакет «Ориентация» в пакет «Картография»:
Желтый фон здесь и далее обозначает информационную составляющую технологического пакета, информационный пакет или научную дисциплину, сиреневый фон – значимую онтологему или мифологему.
На этой схеме карты и лоции еще не связаны с географическими координатами, поскольку эти координаты еще надо было научиться измерять. В принципе, без этого можно было обойтись, если бы можно было с абсолютной точностью двигаться по счислению. Увы, такое путешествие обычно заканчивалось в море на рифах, а в пустыне – потерей ориентации со всеми вытекающими отсюда последствиями.
Задача определения географических координат была сформулирована еще в античности. Тогда же научились более или менее точно измерять широту. Это, кстати, потребовало в качестве информационного базиса разработать математику, перейти от нее к физике и построить механику как основу конструирования приборов. Попутно пришлось ввести важнейшую онтологему «измерения».
Уже на границе Средних веков и Нового Времени механика развилась до аналитической механики, в результате чего астролябия превратилась в октант, а затем и в секстант. Стало удобнее. Впрочем, и астролябия задачу измерения широты решала. Как правильно заметил Остап Бендер:
С долготой все обстояло значительно хуже, хотя принцип был понятен изначально. Нужно было только сравнить время текущей и исходной точки. Скажем, полдень в текущем месте нахождения корабля соответствует 14 часам 22 минутам в Гринвиче. Следовательно, корабль находится в 35 градусах 30 минутах к западу от Гринвича – где-то в середине Атлантики.
Определить местное время было несложно. Казалось бы, с «домашним временем» все еще проще – его нужно только хранить. Но вот эта задача потребовала огромных усилий. Первый в истории ясно выраженный «государственный заказ на проведение НИРов» был дан английским адмиралтейством именно на способ определения долготы, то есть, собственно, на «хранение времени».
Задача эта, как оказалось, имеет два независимых решения. Можно было изобрести механический хронометр или же использовать независимое от положения наблюдателя на поверхности Земли звездное время. Например, принять систему «Юпитер плюс Галилеевы Луны» за большие часы.
Заметим, что начали проявляться системные свойства технологического пакета: многие элементы субпакета «Измерение долготы» присутствуют и в других субпакетах ТП «Навигация» (оранжевый шрифт). Заметим также, что возникновение представлений о точном времени потребовало институционального решения (здесь и далее – серый фон), которым в Европе стала монастырская система.
Замыкающая технология ТП «Навигация» была создана в Китае, но не нашла там применения – в том числе и потому, что отсутствовали важнейшие субпакеты. Зато она была нужна в Европе. Компас позволял ориентироваться в тумане, в горах, в пещерах, в тропическом лесу. Правда, для кораблей сразу же появилась необходимость в целой группе научных дисциплин и практических работ по теме «девиация компаса», ставших особенно актуальными при переходе к железному кораблестроению.