Идея Гейзенберга заключалась в радикальном изменении модели Бора. Он полагал, что местоположение, скорость и траектория не являются напрямую измеряемыми величинами, и следовательно, их нужно заменить на другие, имеющие более удовлетворительную квантовую интерпретацию — такие, например, как энергетические уровни и амплитуда перехода. С помощью этой основополагающей идеи Гейзенберг рассмотрел простую ситуацию с одномерным гармоническим осциллятором, которым являются, например, маятник или груз на пружине, и доказал, что описание динамических свойств (таких как положение или скорость частицы) требует введения операторов, зависящих от целых чисел (квантовых чисел), связанных с переходом от одного определенного квантового состояния к другому определенному квантовому состоянию.
Из этой зависимости от двух показателей следовало, что изначальные величины можно представить в виде строгой таблицы чисел, составленной из строк и столбцов. Такая конфигурация устанавливала более чем странное свойство: результат не обладал свойствами коммутативного умножения. Другими словами, итоговый результат зависел от порядка сомножителей. Сначала Гейзенберг посчитал данный результат ошибкой, недостатком теории, который следует устранить. И все же он рискнул послать статью своему научному руководителю, Максу Борну, который немедленно решил опубликовать ее.
То, что Гейзенберг считал слабым местом новой теории, Дираку казалось наиболее важной ее идеей. Он детально изучил классическую механику и формализм Гамильтона и прекрасно знал о существовании переменных и величин, которые не обладают свойствами коммутативного умножения. Но можно ли было провести аналогию между новыми квантовыми величинами Гейзенберга и переменными классической теории? Ответ на данный вопрос пришел Дираку внезапно, когда он вспомнил о «скобках Пуассона». Позднее он рассказывал:
После нескольких недель упорной работы Дирак вывел искомое соотношение:
xy - yx = ih/2π [x,y].
Это уравнение напрямую связывало квантовые величины, или операторы Гейзенберга, с классическими переменными, введенными благодаря скобкам Пуассона, [х, у]. В уравнении использовалась постоянная Планка h, коэффициент 2π и мнимая единица i = √-1. Уравнение можно было записать с помощью «редуцированной постоянной Планка», равной
ħ = h/2π
Данное понятие было введено Дираком в 1930 году.