Читаем Дирижабли на войне полностью

Моторных гондол было всего 3; они находились за миделевым сечением, ближе к корме. В каждой из них были установлены по 2 мотора Роллс-Ройс «Кондор», мощностью по 660 л. с. каждый. Моторы располагались: один в передней, другой в задней части гондолы. Соответственно были и винты — тянущий и толкающий.

При проектировании R.100 выяснялся вопрос, что именно является более выгодным: шесть отдельных гондол с одним мотором в каждой или три моторных гондолы с двумя моторами. В последнем случае коэффициент полезного действия заднего винта, работающего в струе переднего винта, меньше. В то же время увеличение веса при установке шести гондол вместо трех, а также необходимость иметь при этом лишних механиков в значительной мере компенсировали недостаток установки двух моторов в одной гондоле. Задние двигатели каждой гондолы снабжались механизмом реверса, позволявшим изменять направление вращения винта.

На испытаниях R.100 достиг максимальной скорости 132 км/ч и показал себя в целом хорошо. Вершиной его карьеры стал двойной перелет Атлантического океана из Кардингтона в Монреаль и обратно, совершенный в августе 1930 года. В том полете на его борту находилось 38 человек экипажа и 44 пассажира. На подходе к Монреалю дирижабль благополучно преодолел полосу сильных грозовых шквалов, причем в полете был произведен ремонт сорванной обтяжки руля высоты. Путешествие в Канаду длилось 78 часов, а обратный полет, благодаря сильному попутному ветру, сократился до 58 часов. Во время этого перелета были проверены технические качества корабля. Такие впечатляющие результаты еще больше укрепили мнение сторонников дирижаблей в счастливом будущем британского воздухоплавательного транспорта. Ускоренными темпами строились аэродромы и причальные вышки в Исмаилии (Египет), в Карачи (Индия), в Сент-Губерте (Канада) и в Гроутвилле и Дурбане (Южная Африка).

После возвращения R.100 из Канады комиссия подписала акт приемки дирижабля в эксплуатацию и этим действием подтвердила, что условия договора были полностью выполнены. Фирма «Эйршип Гаранти» вскоре после этого распалась. Теперь правительство рассчитывало только на свои собственные силы в лице «Ройал Эйршип Уоркс», где строился удивительный дирижабль R.101. Технически он был еще более совершенным, чем его предшественник R.100.

Для того чтобы показать главные различия между обоими дирижаблями, мы приводим ниже таблицу основных характеристик R.101 (до его переделки) и R.100.

Основные характеристики R.101 (до его переделки) и R. 100



Корпус дирижабля R.101 состоял из 16 шпангоутов, 15 главных стрингеров и 15 второстепенных (промежуточных). Таким образом, поперечное сечение корабля представляло собой 30-сторонний многоугольник, длина сторон которого на миделе корабля равнялась 4,11 м. Стрингеры везде шли поверх шпангоутов. При постройке R.101 для изготовления ферм каркаса в качестве материала применялась, кроме дюраля, также и нержавеющая сталь. Стальные конструкции каркаса R. 101 составляли около 25 % от веса всего каркаса.

Помещения для пассажиров размещались на двух палубах, находящихся внутри корпуса между 6-м и 8-м шпангоутами. Еще до постройки дирижабля широко обсуждался вопрос о том, где именно расположить пассажирские помещения.

Доводы в пользу устройства этих помещений в гондоле, выступающей наружу и являющейся продолжением гондолы управления, сводились к тому, что, во-первых, это предоставит пассажирам лучший обзор. Во-вторых, пассажирские помещения не будут занимать пространство внутри каркаса, которое можно использовать для подъемного газа.

Доводы в пользу устройства помещений внутри каркаса: уменьшение общего лобового сопротивления корабля, возможность устройства более обширных помещений для пассажиров, позволяющих свободно передвигаться по значительной площади пола. Что касается уменьшения объема для газа внутри каркаса за счет находящихся там пассажирских помещений, то разработчики посчитали эту проблему несущественной. Забираемый объем 2850 куб. м уменьшал подъемную силу примерно на 3 т. Устройство же большой пассажирской гондолы, выступающей наружу, увеличивало лобовое сопротивление корабля почти на 12 %. Для достижения той же скорости полета при перелете из Англии в Египет потребовалось бы увеличить запас горючего на 4 т. Возникало также опасение, что при перенесении пассажирских помещений внутрь корабля, т. е. при смещении общего центра тяжести дирижабля несколько вверх, корабль окажется менее устойчивым. Произведенные исследования показали, что это опасение необосновано.

Вес конструкции пассажирских помещений по проекту составил 102 кг на одного пассажира. Площадь пола верхней палубы этого помещения (без боковых галерей для прогулок), составила 510 кв. м. Площадь пола нижней палубы — 162 кв. м. Впоследствии предполагалось увеличить эту площадь еще на 370 кв. м путем устройства балконов по обеим сторонам палубы.

Перейти на страницу:

Все книги серии Профессионал

Похожие книги

Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники