Читаем Дирижабли на войне полностью

Отдельные части конструкции производились на самолетостроительном заводе военно-морского флота (NAF) в Филадельфии и транспортировались к месту сборки по железной дороге и автомобильным транспортом. 24 апреля 1922 года первое кольцо шпангоута прибыло к месту сборки и было установлено в вертикальном положении на стапель ангара № 1. Каркас воздушного корабля быстро удлинялся в сторону хвостовой части, обрастая главными и промежуточными секциями, которые соединялись между собой стрингерами. Хвостовое оперение собиралось из балок треугольного сечения. Концентрированные массы (топливо, балласт и др.) равномерно распределялись по длине дирижабля. Радиальные и хордовые растяжки выравнивали статистические и динамические нагрузки, действующие на конструктивную структуру воздушного корабля. Постепенно корпус корабля приобретал цилиндрическую форму. К середине августа одиннадцать секций каркаса дирижабля стояли на стапеле, а в ноябре его готовность оценивалась в 75 %. Изнутри каркас посекционно был обтянут сеткой, которая обеспечивала равномерное распределение нагрузки от газовых баллонов и делила каркас на отсеки. Двадцать десятиметровых отсеков предназначались для размещения газовых баллонов. 23 ноября 1922 года в средний отсек каркаса был заведен газовый баллон, который затем в испытательных целях надули воздухом до 100-процентного заполнения. 1 февраля 1923 года работы по изготовлению каркаса корпуса воздушного корабля завершились.

Материал для внешней обшивки корпуса корабля состоял из высококачественной хлопковой ткани, которая обтягивала заранее изготовленные панели. Требования к обшивке были достаточно высоки, так как она должна была обеспечивать хорошую аэродинамику и одновременно выдерживать большие растягивающие нагрузки, возникавшие в результате напора набегающего воздуха, маневров корабля и ухода размеров геометрии корпуса под воздействием колебаний температуры окружающего воздуха. В стыки между панелями вводился специальный герметик, который обеспечивал целостность и хорошую обтекаемость обшивки в условиях динамических и температурных нагрузок. На заключительном этапе работ обшивка покрывалась специальной алюминиевой пудрой, делавшей ее поверхность гладкой, что повышало устойчивость к метеоусловиям и отражало значительную часть солнечного светового потока.

В это же время началось оснащение корабля: были установлены контейнеры для мешков с балластом, баки для топлива, масла и воды, насосы и сотни единиц различного оборудования. Рубки управления и двигательные гондолы находились также на стадии завершения. Шесть двигателей предполагалось отнести подальше от корпуса и разместить их в специальных контейнерах. Командирская гондола, установленная в передней части корпуса, и гондола управления двигателями, находившаяся в хвостовой части, имели специальные опоры, которые давали возможность опускать корабль на землю для технического обслуживания. Шестой двигатель, располагавшийся прямо за гондолой управления, позже был демонтирован. Буквально в последний момент моторы «Либерти» заменили на менее мощные (300 л. с.), но более высотные «Паккард».

Двигательная установка имела особенность, существенно отличавшую ее от немецкого аналога. Несущий газ — гелий — был очень трудоемок в изготовлении и соответственно дорог. Как во время полета, так и после него необходимо было открывать вентили и стравливать газ, чтобы уравновесить дирижабль в зависимости от состояния окружающего воздуха. Во время полета уменьшалось количество топлива, поэтому дирижабль становился легче и мог совершить неконтролируемый подъем. Стравливанием небольшого количества газа добивались уменьшения подъемной силы и таким образом уравновешивали уменьшение веса.

Этот способ был обычен, пока использовали дешевый водород. Гелий же следовало использовать с максимальной отдачей. Конструкторы решили охлаждать выхлопные газы моторов, конденсировать содержащуюся в воздухе воду и таким образом компенсировать уменьшение веса топлива. Но полностью решить эту проблему не удалось, так как воды получалось не так уж и много. Конденсаторную установку впервые разместили на ZR-1, но затем она стала стандартным оборудованием на последующих американских жестких дирижаблях.

К середине июня 1923 года воздушный корабль в целом был закончен, и только отсутствие двигателей сдерживало изготовителей от предъявления его заказчику. Тем не менее на находящемся в эллинге дирижабле проходили испытания различного оборудования и устройств. Первоначально ZR-1 предполагалось заполнить водородом, но катастрофа R.38 и случившийся через неделю пожар, который уничтожил три (водородных) полужестких дирижабля на военно-морском аэродроме Рокквэй, перечеркнули эти планы, и бюро аэронавтики настоятельно порекомендовало применить для заполнения баллонов инертный гелий.

Перейти на страницу:

Все книги серии Профессионал

Похожие книги

Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Изобретено в СССР
Изобретено в СССР

Изобретательская мысль в Советском Союзе развивалась своеобразно. Ее поощряли в избранных областях – космической, военной, научной – и практически игнорировали в бытовой. Иначе говоря, мы совершали важнейшие прорывы в ракетостроении и фундаментальных исследованиях, но серьёзно отставали во всём, что касалось повседневной жизни, от пылесосов до автомобилей. У этой книги две задачи. Первая – рассказать об изобретениях, сделанных нашими соотечественниками в советский период, максимально объективно, не приуменьшая и не преувеличивая их заслуг; вторая – показать изобретательство в СССР в контексте, объясняющем его особый путь. И да, конечно, – развеять многочисленные мифы, связанные с историей изобретательства.

Тим Юрьевич Скоренко

История техники / Научно-популярная литература / Образование и наука