Конечная судьба солнц удивительно проста. Оболочка туманности постепенно расплывается в межзвездном пространстве, где в конечном итоге объединяется с газовыми туманностями, в которых в далеком будущем могут возникнуть новые поколения звезд и планет. Тем временем горячее ядро, излучая в пространство, постепенно охлаждается. Все это время на диаграмме Г—Р оно передвигается вниз, оказываясь слева от главной последовательности. Оно превратится в белого карлика. Значительная часть массы Солнца будет утрамбована в шар размером в Землю. Белый карлик не сжимается, несмотря на то что его внутреннее гравитационное поле очень сильно. Электроны, эти маленькие заряженные частицы, образующие внешние облака вокруг атомов, сжаты так сильно, что их давление может противостоять гравитации. Это электронное давление возникает не из-за отталкивания электронов, как вы можете предположить. Это особая сила, похожей на которую нет в нашем обычном мире. Эта сила имеет квантовую природу и проявляется только в микромире элементарных частиц. Она возникает вследствие того, что все электроны внутри звезды должны обладать различными по величине энергиями.
При дальнейшем остывании белый карлик медленно гаснет. В конце концов он остынет настолько, что не будет ничего излучать в видимом свете. Он превратится в черного карлика, почти необнаружимую груду ядерных отходов, состоящих в основном из гелия, углерода, азота и кислорода. Все вещество, в нем содержащееся, на этой стадии достигло конца космической дороги, если иметь в виду предсказуемое будущее Вселенной. Через шесть миллиардов лет Солнце и Земля безусловно будут мертвы.
Исследование эволюции звезд, более горячих чем Солнце, окружным путем приводит нас снова, как мы увидим, к проблеме зарождения Солнечной системы. Не место в книге о Солнце вдаваться во второстепенные детали эволюции звезд, поэтому мы подчеркнем только основные моменты. У звезд с большей массой и, следовательно, более горячих, чем Солнце, процесс превращения водорода в гелий идет другим путем, через углеродно-азотный цикл. Эта реакция состоит из шести стадий, и в ней ядра углерода и азота используются лишь как вспомогательные звенья для образования гелия из самых легких элементов. Сами углерод и азот не расходуются. Внутри Солнца температура недостаточно высока, чтобы углеродно-азотный цикл мог эффективно осуществляться, но он работает внутри более горячих звезд, центральная температура которых превышает 16 млн. градусов. Вклад этого цикла в энергию, выделяющуюся внутри Солнца, составляет всего около 2%.
Одной из наиболее важных характеристик звезд с большей, чем у Солнца, массой является меньшая продолжительность жизни. Это может показаться немного странным: ведь у более крупных звезд больше топлива и поэтому они должны вроде бы жить дольше. Верно, у них больше топливных запасов, но они расходуют их гораздо быстрее. Так, звезда с массой в 5 раз большей солнечной имеет в 5 раз больше водорода для ядерного реактора. Однако большая масса приводит к большему сжатию и, следовательно, к более высоким значениям температуры и давления в центре звезды. В результате скорость ядерных реакций увеличивается примерно в тысячу раз. В итоге смерть звезд наступает в двести раз быстрее, примерно через 50 млн. лет. Теперь задумайтесь над следующим вопросом. Человек появился только через 5 млрд. лет после образования прото-Солнца. Могла ли разумная жизнь развиться на планетах, вращающихся вокруг звезд большой массы? Вряд ли, ведь время жизни этих звезд слишком мало.
И все же самое удивительное, что именно эти расточительные звезды сделали возможным зарождение жизни. Когда звезда типа Солнца умирает, она сбрасывает газовую оболочку в космическое пространство и сжимается в шар, содержащий легкие элементы: гелий, углерод, азот. Но когда умирает массивная звезда, она делает это гораздо эффектнее. Объект в 10 раз массивнее Солнца просто не может погаснуть тихо. При истощении запасов топлива, ядро такой звезды очень быстро сжимается, возможно в течение секунды, превращаясь или в небольшой нейтронный шар диаметром 10 км, или, может быть, даже в черную дыру. В результате такого направленного внутрь взрыва, или имплозии, возникает ударная волна, пересекающая внешнюю оболочку в то время, когда она начинает обрушиваться на ядро. Ударная волна сжимает газ, и в течение следующей секунды его температура возрастает до значения, достаточного для ядерного взрыва. Решающий момент во всем этом процессе — внезапная смерть ядра в результате эффекта гравитации, которому уже не может противостоять давление. Это лишает оболочку звезды возможности спокойно перестроиться. Умирающей массивной звезде ничего не остается, как превратиться в сверхновую звезду.