Открытие колебаний Солнца, сделанное совершенно случайно в результате проверки неверной теории, имеет важные последствия для теоретиков-создателей солнечных моделей. Подобно тому как сейсмические колебания Земли, вызванные землетрясениями, дают информацию о внутренней структуре Земли, нормальные моды колебания Солнца сильно зависят от распределения температуры и плотности внутри Солнца. Кембриджские исследователи использовали удивительные результаты Хилла для критического анализа моделей структуры Солнца. Классические солнечные модели выдержали это испытание с честью, но в результате нейтринная проблема так и остается нерешенной.
Другие группы исследователей сообщили об обнаружении солнечных колебаний с еще более длинными периодами, равными почти трем часам. Поскольку эти измерения не были подтверждены независимыми экспериментами, они пока не могут считаться надежно установленными. Но если трехчасовые колебания Солнца окажутся действительно реальными, это снова вызовет смятение в умах теоретиков.
По нашему мнению, современные представления о центральных областях Солнца хорошо обоснованы, причем теория и наблюдения неплохо подтверждают друг друга. Это также означает, что модели эволюции звезд главной последовательности подобных Солнцу, по всей вероятности, близки к истине. Конечно, изучение самих звезд помогает подтвердить результаты солнечных исследований. Особенно важным представляется изучение поведения звездных скоплений. Когда в космическом газовом облаке рождается звездное скопление, его члены сильно различаются по массе. Поскольку звезды с большей массой эволюционируют быстрее, в каждый определенный момент скопление представляет собой картину звездной эволюции: тяжелые звезды почти при смерти, а небольшие только-только начали использовать свои топливные запасы. Поэтому диапазон свойств звезд внутри скопления характеризует различные фазы развития нормальной звезды. Изучение скопления является наиболее важной основой для проверки звездных моделей. Анализ звездных скоплений подтвердил нашу веру в надежность солнечных моделей.
В этом кратком обзоре мы подошли к пределу наших знаний о структуре внутренних областей Солнца. Помогут ли новые результаты решить проблему нейтрино? Будем надеяться на это. В оставшейся части этой книги наше внимание будет обращено на то, что можно назвать наружностью Солнца, на те слои, которые непосредственно поддаются наблюдениям.
Поверхность и атмосфера
Видимая поверхность Солнца, фотосфера, находится в состоянии непрерывной активности. Турбулентные движения конвективных ячеек под поверхностью приводят к образованию тонкой структуры солнечной грануляции, описанной в гл. 4. Температура поверхности может быть определена несколькими способами. Например, если для спектрального распределения белого света фотосферы найти с возможно большей точностью соответствующую кривую излучения черного тела, то мы определим чернотельную температуру фотосферы. Она оказывается равной 6000 К. Другой способ заключается в нахождении температуры Солнца исходя из величины излучаемой им энергии. Эта температура оценивается в 5800 К.
Не существует какой-то одной «правильной» солнечной температуры, так как Солнце — сложный объект, в котором температура меняется с высотой над поверхностью. Мы получаем энергию от слоя толщиной около 500 км, температура в котором меняется с глубиной. Излучение центра диска приходит в основном от слоев с температурой газа, равной 6500 К, в то время как за излучение края ответственны более холодные слои. Любой метод определения температуры является компромиссным, но это не так важно, если точно определены его условия.
Резкий край Солнца, о котором мы говорили в гл. 4, возникает следующим образом. Вблизи фотосферы большая часть поглощения видимого света создается особым типом атома водорода. Обычный атом водорода имеет один протон и один обращающийся вокруг него электрон, он устойчив и электрически нейтрален. Иногда атом водорода на время может захватить добавочный электрон, превращаясь в атом водорода с двумя электронами и отрицательным электрическим зарядом. Такая частица называется отрицательным ионом водорода. Это состояние может сохраняться лишь в определенном интервале температур. На Солнце переход от одного состояния к другому происходит быстро, и в результате, когда излучение просачивается вверх, оно внезапно встречает область, в которой поглощающие его ранее ионы водорода практически отсутствуют. Поэтому излучение почти беспрепятственно выходит наружу. Именно внезапность изменений, как уже отмечалось ранее, и приводит к появлению резкого солнечного края.
Желто-белый свет фотосферы обладает плавно меняющимся спектром, в котором отсутствуют линии. Но прежде чем покинуть Солнце окончательно, свет должен пересечь более холодные слои его атмосферы. Внутри этой более холодной зоны свет испытывает поглощение, благодаря которому мы получаем очень ценную информацию относительно атмосферных условий. В старых книгах этот слой иногда называется обращающим.