Читаем До и после Победы. Книга 1 (СИ) полностью

Наиболее мягко позволяют регулировать обороты двигатели постоянного тока, вот только получить его - проблема, так как в основном промышленные сети несут переменный ток. Чтобы из переменного получить постоянный, применяют несколько схем. Во-первых, это выпрямители - механические или электрические. В первых электромагнит колеблется с частотой электросети, и с той же частотой перекидывает контакт с одного полюса на другой, так что он всегда передает напряжение только в одном направлении. Электрические выпрямители обычно строятся на ртутных выпрямителях - в парах ртути зажигается электрическая дуга, и так как она зажигается от тока только прямого направления, то и ток проходит через нее только в один из полупериодов. Соответственно, мостовая схема включения, когда две пары ртутных ламп пропускают ток либо в положительном, либо в отрицательном полупериодах, и дает на выходе ток только одного направления. Применяют мостовые схемы и на полупроводниках - как правило, это купроксные элементы - закись меди на меди - в их контакте и возникают полупроводниковые эффекты. Их обычно соединяют в пакетные схемы, так как один элемент держит напряжение не более пяти вольт. Самая суровая схема - это когда от сети переменного тока работает мотор, который вращает генератор постоянного тока, и уже от него запитываются приводы станков - так называемая система Леонарда. Ну и если на предприятии есть собственный генератор, он может быть сразу генератором постоянного тока - небольшие расстояния позволяют не беспокоиться и потерях при передаче такого тока к исполнительным устройствам.

Схема двигателя важна и с точки зрения пусковых моментов. Так, в сериесных двигателях обмотка возбуждения и обмотка якоря включены последовательно - потому они так и называются - series, то есть последовательные, соответственно, ток обмотки и ток якоря практически одинаковы. Такое включение дает большой начальный вращающий момент - как раз самое то для крановых двигателей, двигателей прокатных станов и прочих механизмов, в которых возникают высокие начальные усилия. Разве что такие двигатели нельзя включать на холостом ходу - число оборотов без нагрузки нарастает очень быстро и двигатель разносит. Чтобы этого избежать, используют несколько схем с шунтирующими сопротивлениями. У синхронных лучше перегрузочная способность - то есть способность выдержать перегрузку относительно номинальных значений - у них она доходит до 2,5 и даже до 4 раз, тогда как в двигателях постоянного тока - до 2, максимум до 3, в асинхронных с кольцами - 2-2,5, а в короткозамкнутых - всего 1,8-2. А чем выше перегрузочная способность, тем меньше потребная мощность и, соответственно, размеры двигателя.

Но для прокатного стана нужен двигатель с длинным якорем и небольшим диаметром, чтобы уменьшить маховые моменты и, соответственно, время пуска и останова, но при этом за счет увеличенной длины обеспечить достаточную мощность. И чем выше скорость вращения, тем выше мощность двигателя. Но скорость вращения ограничена количеством полюсов - чем их больше, тем меньше скорость вращения. Полюсное деление мощных двигателей - то есть часть дуги, приходящейся на обмотку одного полюса - обычно не менее десяти сантиметров, в крайних случаях - шесть сантиметров. Соответственно, при частоте сети 50 герц и двух полюсах скорость вращения будет 1500 оборотов в минуту, а диаметр ротора - всего 13 сантиметров. Но количество полюсов приходится увеличивать, иначе необходимый ток, протекающий через обмотки, будет очень сильно их нагревать - поэтому, чтобы снизить ток через обмотку и вместе с тем увеличить мощность двигателя, и приходится увеличивать количество полюсов, а вместе с тем и диаметр двигателя. Как вариант - наращивать длину, тогда частоту вращения можно оставить высокой - но это уже потребует более сложных передаточных механизмов - редукторов, которые снизят скорость вращения до необходимой для обработки и вместе с тем должны будут выдерживать высокие нагрузки, передаваемые от мощного двигателя. И тут уже приходится сопоставлять разные варианты - что проще - увеличить габариты двигателя и уменьшить затраты на механическую обработку шестерен, корпуса и прочих деталей редуктора, или же редуктор можно будет сделать достаточно просто, и тогда можно уменьшить диаметр двигателя. При этом надо учитывать, что более массивный редуктор добавляет свои массы к массам, которые двигателю надо разогнать или остановить - и снова расчеты, уже с этих позиций - возможно, массивный редуктор съест все выгоды от уменьшения диаметра двигателя и вместе с тем потребует много механической обработки, так что может быть выгоднее сделать малооборотный двигатель большего диаметра, зато существенно упростить редуктор, вплоть до того, что он вообще не понадобится.

Перейти на страницу:

Похожие книги