Читаем До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной полностью

Именно поэтому выпадение всех орлов стало бы для вас шоком.

Мое объяснение опирается на тот факт, что большинство из нас интуитивно анализирует набор монет — примерно так же, как Максвелл и Больцман призывали анализировать емкость с паром. Точно так же, как ученые отказались рассматривать пар молекула за молекулой, мы, как правило, не оцениваем случайный набор одинаковых монет монета за монетой. Мы не обращаем внимания — нам до этого дела нет! — что 29-я монета легла орлом кверху, а 71-я — решкой. Вместо этого мы смотрим на набор монет в целом. И нам важно число выпавших орлов в сравнении с числом решек: на столе больше орлов, чем решек, или решек, чем орлов? Вдвое больше? Втрое больше? Примерно одинаково? Мы заметим значительное изменение в соотношении орлов и решек, но случайные перестановки, сохраняющие это соотношение, — скажем, если перевернуть 23-ю, 46-ю и 92-ю монеты с решки на орла и одновременно перевернуть 17-ю, 52-ю и 81-ю с орла на решку, — выглядят практически одинаково. Вследствие этого я разбил все возможные исходы на группы, в каждой из которых конфигурации монет выглядят одинаково, и подсчитал населенность каждой группы, то есть число исходов вообще без решек, с одной решкой, с двумя решками и так далее, вплоть до числа исходов с 50 решками.

Главное здесь — понять, что эти группы имеют не одинаковое число членов. Даже близко не одинаковое. И тогда становится очевидно, почему вас шокирует выпадение при случайном броске одних только орлов (в этой группе ровно один член), чуть меньше шокирует выпадение при случайном броске одной решки (группа со 100 членами), еще чуть меньше шокирует обнаружение двух решек (группа с 4950 членами), но бросок, давший половину орлов и половину решек, заставит вас только зевнуть (в этой группе сто миллиардов миллиардов миллиардов членов). Чем больше элементов в заданной группе, тем с большей вероятностью случайный бросок даст результат, относящийся именно к этой группе. Размер группы имеет значение.

Если этот материал вам не знаком, то вы, может быть, не понимаете, что мы только что проиллюстрировали важную концепцию энтропии. Энтропия заданной конфигурации монет — это размер соответствующей группы, число конфигураций, практически неотличимых от заданной9. Если похожих конфигураций много, данная конфигурация имеет высокую энтропию, если мало — низкую. При прочих равных условиях результат случайного броска скорее попадет в группу с высокой энтропией, поскольку в этой группе больше членов.

Эта формулировка также связана с бытовым употреблением слова «энтропия», о котором я упоминал в начале раздела. Интуитивно беспорядочные конфигурации (представьте себе письменный стол, хаотически заваленный документами, ручками и скрепками) обладают высокой энтропией, потому что предметы в них можно организовать множеством способов, при которых итоговая раскладка будет выглядеть практически одинаково; если случайным образом переложить беспорядочную конфигурацию, она все равно будет выглядеть беспорядочной. Упорядоченные конфигурации (представьте безупречно чистый стол, на котором все документы, ручки и скрепки аккуратно разложены по местам) обладают низкой энтропией, поскольку существует очень немного вариантов раскладки вещей, при которых вся система будет выглядеть так же. Как и в случае с монетами, высокая энтропия выглядит привлекательно, потому что беспорядочных раскладок гораздо больше, чем упорядоченных.

Энтропия: факты

Монеты особенно полезны, потому что прекрасно иллюстрируют подход, при помощи которого ученые разбираются с большими наборами частиц, составляющих физические системы, будь то молекулы воды, снующие туда-сюда в горячей паровой машине, или молекулы воздуха, летающие по комнате, где вы сейчас дышите. Как и с монетами, мы игнорируем детальную информацию об отдельных частицах (не важно, находится ли конкретная молекула воды или воздуха в каком-то определенном месте) и вместо этого группируем конфигурации частиц, которые выглядят практически одинаково. Для монет критерием одинаковости конфигураций служит соотношение орлов и решек, и, поскольку нас, как правило, не интересует, как легла конкретная монета, мы обращаем внимание только на общий вид конфигурации. Но что означает «конфигурации выглядят практически одинаково» для большого набора молекул газа?

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука